### Energy Efficiency Investments as an Employment Generator

Robert Pollin

Department of Economics and Political Economy Research Institute (PERI)

University of Massachusetts-Amherst

ACEEE Conference, Washington DC December 8, 2010

### Unified Program for Environment and Employment

- Fighting Climate Change and Expanding Decent Employment as Distinct Goals
  - Tinbergen critique: can't kill two birds with one stone
  - Inevitable trade-offs or possibilities for complementarities?
  - Pathways out of poverty?

# Spending Creates Employment, but How Much?

- Net Employment Benefits for Given Spending Level Dependent on Three Variables
  - Labor Intensity
  - Domestic Content
  - Compensation
- No Particular Connection with Green Agenda

#### RELATIVE EMPLOYMENT CREATION: ACTIVITY X VS. ACTIVITY Y \$1 Million in Expenditures

|                               | ACTIVITY X                                          | ACTIVITY Y                                                     |
|-------------------------------|-----------------------------------------------------|----------------------------------------------------------------|
| Labor Intensity of Production | 30% spending on labor<br>= \$300,000                | 60% spending on labor<br>= \$600,000                           |
| <b>Domestic Content</b>       | 80%<br>= \$240,000 U.S. wage bill                   | 90%<br>= \$540,000 U.S. wage bill                              |
| Average Compensation          | \$60,000                                            | \$50,000                                                       |
| TOTAL EMPLOYMENT              | 4 JOBS<br>(= \$240,000 wage bill/<br>\$60,000 wage) | 10.8 JOBS<br>(= \$540,000 U.S. wage<br>bill/<br>\$50,000 wage) |

### RELATIVE EMPLOYMENT: "FOSSIL FUELS" VS. "CLEAN ENERGY" \$1 Million in Expenditures Hypothetical Case Based on Representative Figures

|                                  | "Fossil Fuels"                                      | "Clean Energy"                                                 |
|----------------------------------|-----------------------------------------------------|----------------------------------------------------------------|
| Labor Intensity of<br>Production | 30% spending on labor<br>= \$300,000                | 60% spending on labor<br>= \$600,000                           |
| <b>Domestic Content</b>          | 80%<br>= \$240,000 U.S. wage bill                   | 90%<br>= \$540,000 U.S. wage bill                              |
| Average Compensation             | \$60,000                                            | \$50,000                                                       |
| TOTAL EMPLOYMENT                 | 4 JOBS<br>(= \$240,000 wage bill/<br>\$60,000 wage) | 10.8 JOBS<br>(= \$540,000 U.S. wage<br>bill/<br>\$50,000 wage) |

#### **Energy Efficiency as Step One**

- Clean Energy Transformation should begin with energy efficiency, then move to renewables
  - With Efficiency:
    - Technologies are known
    - Risks are low
  - With Renewables:
    - Need to invest in R&D, Commercialization to move down cost curve

#### **Energy Efficiency Investments vs. Fossil Fuels**

TABLE 4
Employment impacts of alternative energy sources

Job creation per \$1 million in output

| Energy source                              | Direct job creation per<br>\$1 million in output<br>(# of jobs) | Indirect job creation per<br>\$1 million in output<br>(# of jobs) | Direct and indirect job creation<br>per \$1 million in output<br>(# of jobs) | Direct and indirect job<br>creation relative to oil<br>(% difference) |
|--------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Fossil fuels                               |                                                                 |                                                                   |                                                                              |                                                                       |
| Oil and natural gas                        | 0.8                                                             | 2.9                                                               | 3.7                                                                          | -                                                                     |
| Coal                                       | 1.9                                                             | 3.0                                                               | 4.9                                                                          | +32.4%                                                                |
| Energy efficiency                          |                                                                 |                                                                   |                                                                              |                                                                       |
| Building retrofits                         | 7.0                                                             | 4.9                                                               | 11.9                                                                         | +221.6%                                                               |
| Mass transit/freight rail (90% MT, 10% FR) | 11.0                                                            | 4.9                                                               | 15.9                                                                         | +329.7%                                                               |
| Smart grid                                 | 4.3                                                             | 4.6                                                               | 8.9                                                                          | +140.5%                                                               |

# Why Not All Energy Efficiency Investments as Job Generators?

- First-order vs. Second-order effects
  - Substituting Efficient vs. Inefficient:
    - Autos, appliances, new construction
      - No first order effect; second-order effect will be positive
- First-order effect: apples vs. oranges
  - Constructing new infrastructure vs. maintaining and incrementally improving exisiting one

# Job Creation through Low Productivity?

#### Productivity of what?

- Producing goods and bads in conventional productivity measure
  - Reducing carbon intensity of output through efficiency highly "productive" activity

#### Job Creation

- Labor as cost vs. labor as life-opportunity
- Abundance of jobs across all sectors and qualification levels through energy efficiency
  - "Pathways out of poverty" not mere slogan

# Did Green Recovery Fail as Job Creator?

Table 3.

Regression Results with U.S. Energy Department Grants from ARRA Stimulus Program

|                      | 2009Q2-3 | 2009Q4 | 2010Q1  |
|----------------------|----------|--------|---------|
| Coefficient          | 0.73     | 0.97   | 0.96    |
|                      | (0.091)  | (0.03) | (0.016) |
| T-Statistic          | 8.01     | 31.6   | 59.5    |
| $R^2$                | 0.13     | 0.61   | 0.76    |
| Number of Individual | 106      | 527    | 1,094   |
| Grant Observations   |          |        |         |

Source: PERI Research for U.S. Energy Department

# Increasing Job Creation by Increasing Spending on Efficiency

- Why Aren't More \$50 bills on sidewalk getting picked up?
  - Recession
  - Systems of intermediation/risk-sharing underdeveloped
  - Hassle factors
- ARRA had good financial incentives but inadequate attention to public/private linkages
  - Important area for ongoing research and policy design