Balancing Bioznergy Opportunities on Our Natural Resource Base

Douglas L. Karlen USDA-ARS, Ames IA

Presentation Outline

> Why is there interest in bioenergy?

> Why is there concern about bioenergy?

> How is USDA-ARS addressing these questions?

> What has cooperative field research shown?

> What are the next steps?

America's Energy Appetite

Proposed Bioenergy Plans

Plan	Goal	Time	Feedstock	Agency
Energy Policy Act of 2005	7.5 billion gal ethanol	2012	2.7 billion bu	Congress
20 in 10	20% of gasoline use (35 billion gal)	2017	12.5 billion bu (440 million tons biomass)	2007 State of the Union Message
25 × '25	25% of US energy consumption (85 billion gal + 400 billion kw)	2025	600 to 750 million tons biomass	Ag Energy Working Group
30 × '30	30% of gasoline used in 2004 (60 billion gal)	2030	1 billion tons	DOE REAP

First Generation Feedstocks

Corn Grain Ethanol Surge

Designed to provide a commodity market for corn grain more than an alternative liquid transportation fuel

Resulted in 15% increase in corn acres planted in Illinois, Indiana, Iowa, Ohio, Michigan, Minnesota and Wisconsin for 2007 (NASS, 2007)

At 2.7 gal bu⁻¹, the 7.5 billion gal EtOH in the '05 Energy Bill required 2.7 billion bu corn

Grain Ethanol Continued

> 2.7 billion bu corn accounted for ~20% of the 2007 corn grain that was produced (~13.5 billion bu)

> CONCERNS

Potential for soil loss of 21 lbs gal⁻¹ @ if erosion occurs at current "T" values (4.9 t acre yr⁻¹) (Sand, 2006)

Potential increased loss of 211 million lbs of N to streams & rivers (Elobeid et al, 2006; Wisner, 2007)

Potential increased loss of 20 million lbs of P to streams & rivers

What Are Our Alternatives?

Biomass for Bioenergy

Forestry - 368 million tons

Agriculture - 998 million tons

- Perennial energy crops 377 million tons
- "Wastes" 87 million tons
- Grain 87 million tons

<u>Crop residues - 428 million tons</u>
 <u>Corn stover - 256 million tons</u>

(projected estimates; Billion Ton Report, Perlack et al 2005)

Comprehending the Challenge

Football Field

If 1 ton = 1 sq in 1 billion tons = 145 football fields

Round Bales

5 ft, 1000 lb, laid end-to-end1.89 million miles75 times around the earth

"Billion Ton" Concerns

- No actual supply curves
- No documented monetary constraints
- Environmental impact was focused solely on wind and water erosion

Generally considered crop residues as "wastes"

Crop Residues Reduce Erosion

Crop Residues "Feed the Critters!"

Biological Activity

CIOWA STATE UNIVERSITY

Crop Residues Build the Soil

N P C S

Soil Structure

Nutrient Cycling Good Plant Rooting

Meeting the Challenge Sustainably

Critical Take-Home Point

Crop residues are not trash!

They have multiple roles that help sustain soil resources

"Economic growth that destroys ecological support systems is neither sustainable nor truly progress"

ARS-Renewable Energy Assessment Project (REAP)

- Management practices
- > Algorithms to guide sustainable harvest
- Decision support tools
 - > How much residue must be retained?
 - Quantify benefits associated with retaining crop residues

VISION

Sustainable Feedstock Production & Harvest

Biomass Harvest - Risk Analysis

Benefits

- Renewable
- Domestic
- Reduces release of fossil CO₂
- Additional farm commodity

Risks

- Decreased surface residues
- Increased erosion
 - Off-site nutrient and sediments
- Decreased SOM
- Decreased productivity
- Other loss of winter cover, habitat

Factors Limiting Crop Biomass Removal

Wilhelm et al., Agron. J. 99:1665-1667

Field Studies at Ames, IA

Participants and Questions

- Collaborative with Drs.
 S.J. Birrell (ISU) & C.W.
 Radtke, Idaho National
 Lab (DOE)
 - Evaluating continuous corn & corn/soybean rotations
- Four crop residue harvest scenarios
- > Nutrient removal
- > Feedstock quality
- > Soil quality impact

Macro-Nutrient Removal

Stover Harvest Scenario	Ranges for Three Hybrids ('05 & '06)			
	N	Р	K	
		lb ac ⁻¹		
Whole plant	17 - 45	2 - 4	29 - 38	
Cob & top 50%	12 - 28	2 - 4	23 - 28	
Bottom 50%	4 - 12	0.5 - 0.7	5 - 12	

Total Nutrient Replacement Cost

Stover Harvest Average for Three Hybrids ('05 & '06) Scenario

	\$ ac ⁻¹	\$ ton ⁻¹	\$ gal EtOH ⁻¹
Whole plant	\$ 27.71	\$ 9.67	\$0.121 [†]
Cob & top 50%	\$ 18.47	\$ 9.49	\$0.118
Bottom 50%	\$ 7.39	\$ 10.10	\$ 0.126

[†] Assumes 80 gal EtOH ton⁻¹ biomass

Unanswered Questions

Effects of Climate Change As the amount & intensity of precipitation increases, soil erosion increases

Land Tenure Questions Short-term focus Increases monoculture and N fertilizer rates Increased N losses and decreased soil C Decreased surface residues – higher erosion

What's Next?

Multiple biomass sources Many new technologies Emphasis on conservation Refinement of expectations Asking & answering the right question

What Can Farmers Do?

No cover

Removed

Winter rye, triticale, spring oat, wheatgrass and other crops are being evaluated

Reduce tillage intensity & use cover crops

What Can Policy Makers Do?

Encourage landscape diversity in all bioenergy legislation. Doing so will make it possible to address bioenergy, air quality, water quality, global warming (through C sequestration) & rural economic problems at the same time.

IF the policies are implemented as an entire agricultural system.

What Can We Do?

First & foremost – do something; follow your passion and interest; questioning, writing, public policy, changing habits, continue learning ...

Conserve energy – lights, vehicles, home heating/cooling, car pooling ...

Finally, help others understand that agriculture is complex; no simple solutions, but progress is possible.

Questions?