Panel Primer Animal Waste to Biogas Can This Be a Significant Energy Resource

Jim Bodensteiner – Iowa DNR John Cuttica – Midwest CHP Application Center Mark Hall – Environmental Power Ricardo Amon – California Energy Commission

> ACEEE Forum on Energy Efficiency in Agriculture Des Moines, Iowa Thursday, February 21, 2008

What is Anaerobic Digestion?

AD is a process where *organic waste* is *broken down* in a *controlled, oxygen free* environment by naturally occurring *bacteria* in the waste material

Benefits of Anaerobic Digestion

- Odor reduction (digestion stabilizes degradable organic matter)
- Digested manure retains most of its nutrient/fertilizer value
- Digestion minimizes release of methane to atmosphere during later storage
- Produces a useable fuel (biogas)

Climate Change is the Newest Environmental Driver

Principal Sources of U.S. Anthropogenic Methane Emissions, 1990-2005							
	Million Metric Tons CO ₂ e		Percent Change				
Source	1990	2005	1990- 2005	2004- 2005			
Energy	275.0	254.9	-7.3%	-1.3%			
Waste Management	250.6	171.5	-31.6%	4.3%			
Agriculture	173.4	183.0	5.5%	1.0%			
Industrial Processes	2.7	2.5	-8.4%	-7.7%			

26% of the agriculture sectors methane emissions are from manure management. In 2005, this was equal to 42.6 million metric tons CO₂e. From 1990 to 2005, emissions from manure management increased by 34%.

Anaerobic Digestion Process Overview

Reference: Robert T. Burns, PhD, PE., Iowa State Univ.

Products from Anaerobic Digestion

Products from Anaerobic Digestion

- Liquids (filtrate)
 - Liquid fertilizer
- Solids (fiber)
 - Compost
 - Animal bedding
 - Pellet/Granule fertilizer
 - Medium density fiberboard and decking

- Biogas
 - 60% fuel value of natural gas
 - Flare It Ø
 - Use It for Heating
 - Use It for CHP
 - Clean It Up for Pipeline
 Use

Approximate Feedstock Yields (Manure Only)

Animal Type	Daily Biogas Production	Btu Content (600 Btu/cuft)	kWh/day/head	Population for 40kW Gen.
Dairy Cow	50 – 80 cuft	30,000 - 48,000	2.6 - 4.2	230 - 370
SOW	4 – 6 cuft	2,400 - 3,600	0.21 – 0.32	3,000 - 4,500

Note: Seen claims of 5 to 6 kWh/day/head (Dairy) -- < 200 head for 40kW

Ag Anaerobic Digestion Types

- Plug flow digesters
- Mixed plug flow digesters
- Complete mixed digesters
- Covered lagoons
- Temperature-Phased Anaerobic
 Digesters
- Anaerobic sequencing batch reactor (ASBR)
- Fixed film digesters
- Upflow anaerobic sludge bed (UASB)

Livestock Based Green Energy Production

Energy Recovery – Biogas (60% to 65% Methane)

- Flare It Ø
- Use It for Heating

 Displace Natural Gas / Propane
- Use It for CHP
 - -Displace Purchased Electricity
 - -Displace Natural Gas / Propane
- Clean It Up for Pipeline Use

CHP Technologies (Biogas Applications)

- Prime Movers:
 - Reciprocating Engines
 - Micro-turbines
- Gas Clean up (H₂S) certainly for microturbines
- Gas Compression (micro-turbines)
- Generator / Heat Recovery
- Grid Interconnect Hardware can be the biggest issue

Pipeline Quality Gas

- Must Remove H₂O, H₂S, and CO₂
- Experience to Date:
 - Stage 1: 86% Methane required for injection in transmission pipeline – high dilution rates
 - Stage 2: 94+% Methane most probably required for distribution line injection

Questions on Gas Injection Option

- Cost of cleanup the larger the gas volume, the more cost competitive
- Gas company cooperation experimental today, injection into pipeline (large dilution)
- Biogas injection specs being developed, a somewhat unknown? (Level of cleanup, cost to meet specs, etc)

Co-Digesting & Community Digesters

- Adding Food Processing Waste to a Manure System Can Increase Biogas Production with Higher Methane Content – Co-digesting
 - Tipping Fees Normal for Handling Food Wastes
 On / Off Farm Location???

Current US Deployment of AD

Source: USEPA November 2007

Figure 1. Trends in Energy Production by Anaerobic Digesters - 2000 through 2007

Potential U.S. Market Anaerobic Digester Gas

- Over 3 GW of Potential Capacity
 - 7,000 Dairy Farms
 - 11,000 Hog Farms
 - 6,800 WWTPs

Source: Resource Dynamics Corp. "Opportunity Fuels for CHP" www.rdcnet.com

Panel Discussion

Please Ask Questions

