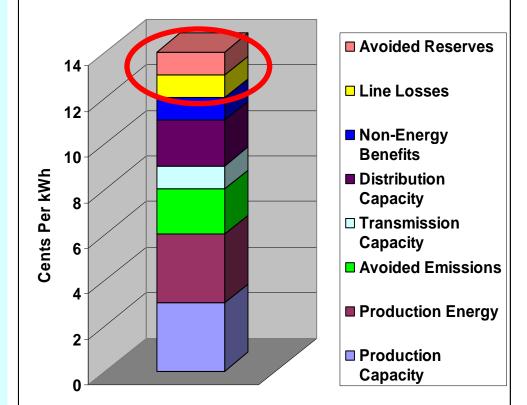


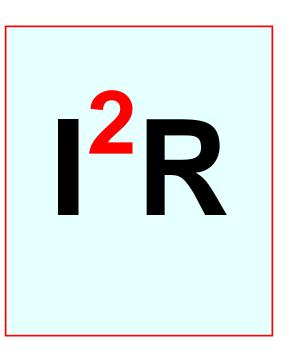
Line Losses and Reserves: Often Undervalued Benefits of Energy Efficiency Investments

Jim Lazar, RAP Senior Advisor Presented to: ACEEE Efficiency as a Resource Denver, Colorado


September 27, 2011

The Regulatory Assistance Project

50 State Street, Suite 3 Montpelier, VT 05602 Phone: 802-223-8199 web: www.raponline.org


Energy Efficiency Has Many Benefits

- Production Capacity
- Production Energy
- Avoided Emissions
- Transmission Capacity
- Distribution Capacity
- Non-Energy Benefits
- Line Loss Reduction
- Avoided Reserves

These Benefits Are Often Undervalued

- The formula for resistive line losses is I²R ⁻⁻⁻ Current (amps) squared X resistance of the lines.
- Losses rise exponentially as the system approaches it's peak.
- The line loss reductions from energy efficiency (or DR) grow exponentially as the system approaches it's peak.

• That exponent is your friend.

Losses On A Distribution System

No-Load Losses (not subject to I²R)

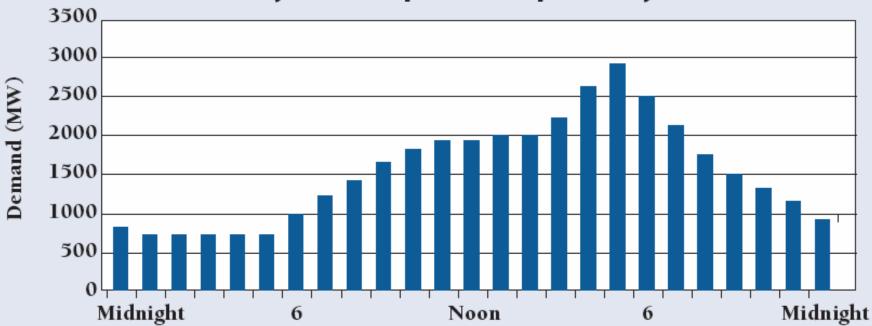
- The losses incurred to energize the system.
- Mostly occur in transformers
- Typically about 25% of total system losses
- These are constant, even at minimum load.

Resistive losses (subject to I²R)

- The losses incurred due to congestion (heat) in the lines and transformers
- Typically about 75% of total system losses
- These rise exponentially with load.
- The calculus is pretty simple: marginal <u>resistive</u> losses are always 2 times the average resistive losses (*first derivative of I*²*R is 2IR*)

But you need to know how much of each type exist.

The Concept of "Marginal" Losses

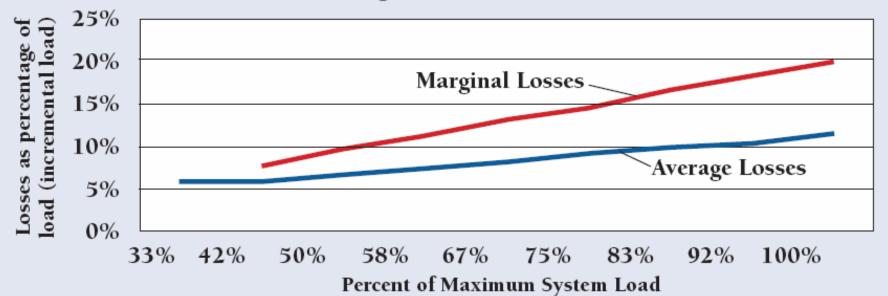

- If the system load goes up, the <u>resistive</u> losses go up exponentially. That is, the "marginal" losses are a much higher percentage of the marginal load than the total losses are a percentage of the total load.
- The same thing happens in reverse when loads go down (i.e., energy efficiency or demand response). EE and DR avoid marginal losses.
- For every hour, the marginal losses are higher than the average losses at that hour.

One Utility's Loss Study

Ontario Hydro Line Loss Study (2005)				
Loss as % of Total Load				
Component	No-Load	Load	Total	
Subtransmission		2.33	2.33	
Substation Transformer	0.21	0.12	0.33	
Primary Distribution Lines		1.18	1.18	
Distribution Transformers	0.78	0.19	0.97	
Secondary Lines		0.24	0.24	
	0.99	4.06	5.05	
% of Total	20%	80%		
Ratio of Marginal to Average Losses:		1.6		
Marginal Energy Losses			8.12	

Loads Are Dramatically Higher During Peak Periods

Daily Load Shape of Example Utility


If Loads Are 4X as high on-peak as off-peak,

how much greater are losses then?

Here's Where That Exponent Can Make a Big Difference

Average and Marginal Line Losses

Assumes 7% average losses; 25% No-load, 75% I²R

If Average System Losses Are About 7%,

Marginal Losses On-Peak Are About 20% THREE TIMES AS HIGH

But Wait! There's More

Reserves

- Utility grids must carry "reserves" above their actual load, in case something breaks.
- These are generation (and associated transmission facilities) that are idle, but ready.
- On most systems, required reserves are a percentage (5% - 20%) of the load.
- If you reduce the load at the meter, you reduce the load at the generator by a much larger amount.
- Reducing the load at the generator may reduce the required reserves the utility grid must carry.

10 kW Saved At the *Meter* **May Be Worth 14.7 kW at the <u>Generator</u>**

Installed Generation (kW)	14.7
Reserve Requirement (15%)	-2.2
Available to Serve Load	12.5
Marginal Line Losses on-Peak (20%)	-2.5
Load At The Meter At System Peak	10.0

47% Capacity Value Bonus for EE/DR

Quantifying These Values To Estimate the Energy Value of EE

• Capacity

- Marginal losses on-peak are about 3 X average losses.
- Add in reserves, at the required level for your control area, RTO, or ISO.
- Total is 35% 50% premium for EE (and DR)

• Energy

- Much more complicated. The (20%) marginal on-peak <u>energy</u> losses are only experienced for a few hours. But at EVERY hour, a marginal reduction in load at that hour will avoid marginal losses at that hour (which, in turn, are 2 times the average resistive losses).
- Rule of thumb: About 25% of losses are no-load losses; the rest are resistive losses. Avoided <u>marginal</u> energy losses are therefore about 1.5 times the system average line losses.

About RAP

The Regulatory Assistance Project (RAP) is a global, non-profit team of experts that focuses on the long-term economic and environmental sustainability of the power and natural gas sectors. RAP has deep expertise in regulatory and market policies that:

- Promote economic efficiency
- Protect the environment
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at www.raponline.org

Jim Lazar: jlazar@raponline.org

China EU

Global The Regulatory Assistance Project

50 State Street, Suite 3 Montpelier, Vermont 05602 phone: 802-223-8199 fax: 802-223-8172

www.raponline.org