Energy-Efficiency Potential Studies

Phil Mosenthal, Optimal Energy voice mail: 802-453-5100 ext. 12 e-mail: PMosen@OptEnergy.com

2003 National Symposium on Market Transformation Washington, D.C. – April 15, 2003

Optimal Energy, Inc.

1

Energy Efficiency Potential Studies Conducted

Vermont Statewide Update – Achievable of Technical Potential

> for VT Department of Pubic Service (w/VEIC)

NW Vermont – Achievable of Technical

➤ for Vermont Electric Power Company (VELCO) (w/VEIC)

Optimal Energy, Inc.

Energy Efficiency Potential Studies Conducted - continued

Michigan – Achievable of Economic

➤ for MI Department of Consumer & Industry Services (w/VEIC)

Maine - Achievable of Technical

> for ME Office of Public Advocate (w/VEIC)

Optimal Energy, Inc.

3

Energy Efficiency Potential Studies Underway

New York State – Technical/Economic/ Achievable of Technical/Program Funding Constrained

➤ for NYSERDA (w/VEIC/ACEEE)

Long Island – Achievable

For Long Island Power Authority (LIPA) (w/VEIC)

Optimal Energy, Inc.

Summary of Electricity (or All Fuels) Savings Potential Studies

(from higher to lower estimates of savings potential)

- ➤ Technical Potential = complete penetration of all measures analyzed in applications where deemed technically feasible from engineering perspective
- > Economic Potential = technical potential of measures cost-effective when compared to supply-side alternatives

Optimal Energy, Inc.

5

Summary of Electricity (or All Fuels) Savings Potential Studies - continued

- ➤ Achievable Potential = technical or economic potential achieved over time under most aggressive program scenario possible
- ➤ Program Funding Constrained Potential = savings in response to specific program funding & measure incentive levels (includes projections of future codes & standards)

Optimal Energy, Inc.

Area(s) Covered	Type of Savings Potential	Year Completed	Ana lys is Author(s)	C om m ents				
C a lifo m ia	Tech./Econ./Ach.of Econ./Prog.Fund.Constr.	2002	Xenergy	Integrated m easures notaddressed; agricuture included in industrial sector				
M assachusetts	Achievable of Economic	2001	R LW Analytics/SFMC	Excludes non-utility in pacts & low income savings/sales				
M ich ig a n	Achievable of Technical	2002	OEINEIC	Residential savings also for natural gas				
NJ,NY,PA	Achievable of Economic	1997	ACEEE	Residentialsavings are for all fuels, not juste lectricity				
AZ,CO,NV,NM,UT,WY	Achievable of Economic	2002	SWEEP/ACEEE/Tellus	Also 18-year scenario				
Verm ont	Achievable of Technical	2002	OEINEIC	Includes fuelswitching; also 5-year scenario				
VT Electric PowerCo.	Achievable of Technical	2002	O E IN E IC	Excludes measures with little peak dem and, that require regional coordination, and emerging technologies; includes fuels witching; also 5-year scenario				
New York City	Achievable of Technical	2003	Resource Insight					
N a tion a l	Program Funding Constrained	1997	U.S.DOE	Addresses all fuel; also 23-year scenario				
Optimal Energy, Inc. 7								

Area(s) Covered	Estimated SummerPeak DemandSavings as% of	Years to Achieve Estimated Savings						
	Residential	Commercial	Industrial	Total	TotalCapacity	Potential		
C a lifom ia	21% 15% 10% 8%	17% 13% 10% 7%	19% 12% 11% 4%	19% 14% 10% 6%	25% 16% 10% 6%	10		
M assachusetts	25%	16% -C&I		N.A.	N.A.	5		
M ichigan	10%	19%	6%	12%	N.A.	10		
NJ,NY,PA	35%	35%	41%	N.A.	NA.	14		
AZ,CO,NV,NM,UT,WY	14%	20%	19%	18%	N.A.	8		
Verm ont	30%	32% - C & I		31%	37%	10		
VT Electric PowerCo.	18%	17% - C & I		17%	23%	10		
New York City	4 %	9 %	<1%	8%	NA.	5		
National	9 %	8 %	11%	10%	14%	13		
Optimal Energy, Inc. 8								

VT Statewide Energy Efficiency Potential Study Scope

- Mid-term (10 years)
- Electricity (includes fuel switching & accounts for fossil fuel & water)
- > All sectors & markets
- Available technologies / emerging technologies / retail products

Optimal Energy, Inc.

9

Residential Analysis Approach

Analysis built "from the ground up":

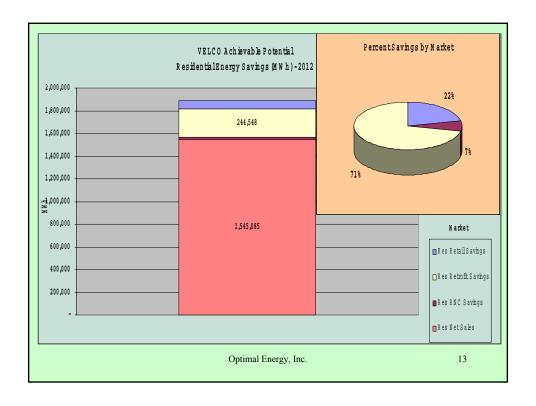
- > End use disaggregation
- ➤ ID & characterize measures (e.g., per unit energy savings/cost, demand savings, duration of savings)
- Characterize markets (new const., retail, retrofit)
- ➤ Estimate baseline & efficiency market penetrations

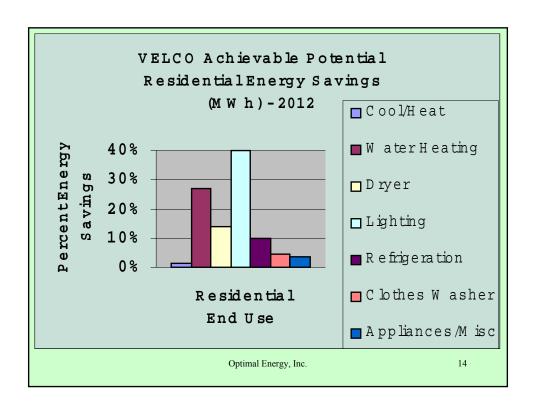
Optimal Energy, Inc.

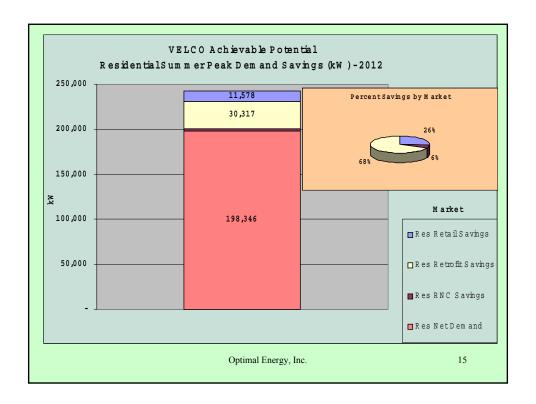
50 Residential Technologies - 90 Measures

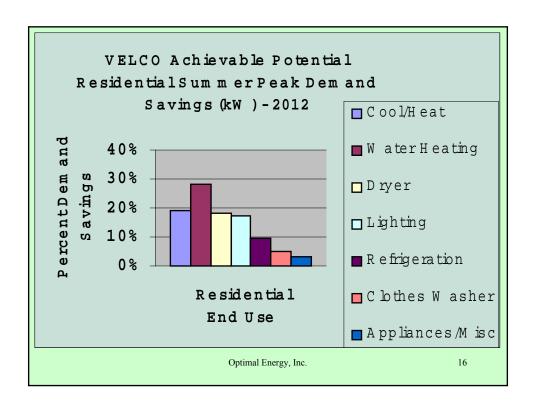
- ➤ Heating / Cooling / Heat Pump (emerging technology)
- > Water Heating
- **≻**Refrigeration
- > Lighting
- ➤ Clothes Washing / Dishwashing / TVs / Pools
- ➤ Miscellaneous (e.g., Consumer Electronics emerging technology)

Optimal Energy, Inc.


11


Residential Analysis Information Sources


VT Statewide Update:


- > US EPA Energy Star® Program results
- > VT DPS Residential Energy Assessment
- ➤ US EIA Residential Energy Consumption Survey (RECS)
- > Historical VT DSM program experience

Optimal Energy, Inc.

Commercial & Industrial Analysis Approach

Analysis takes a "top-down" approach:

- Forecast disaggregation into building types and end use categories
- ➤ ID & characterize measures (e.g., per unit energy savings/cost, demand savings, duration of savings)
- > Characterize markets (new constr. & existing)
- Technology factors applied to building type / end use sales

Optimal Energy, Inc.

17

Commercial & Industrial Analysis Basic Methodology

Annual Measure Achievable Potential (T8 vs. T12 fixture remodel)

Building End Use Sales Per Year MWh		100,000
× Applicability Factor	80%	80,000
× Feasibility Factor	100%	80,000
× Turnover Factor	6.7%	5,333
× Savings Factor	20%	1,067
× Annual Net (Achievable Base Case) Penetration	10%	106.7
Optimal Energy, Inc.		18

Commercial & Industrial Analysis Penetration & Stock Turnover

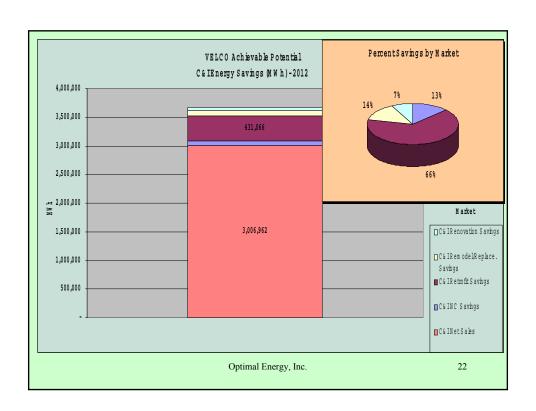
- ➤ Base case penetrations individually estimated for each measure
- Existing construction markets interact
 & effect stock turnover model
- Overlapping & interacting measures accounted for

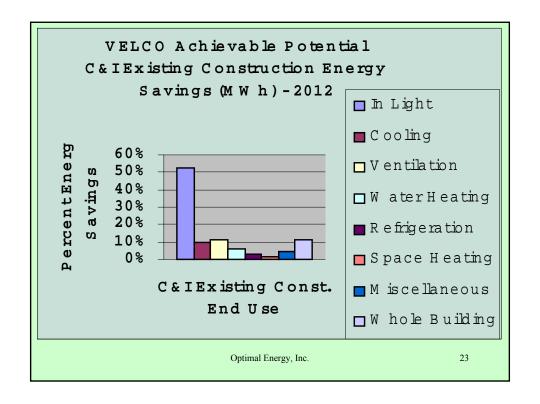
Optimal Energy, Inc.

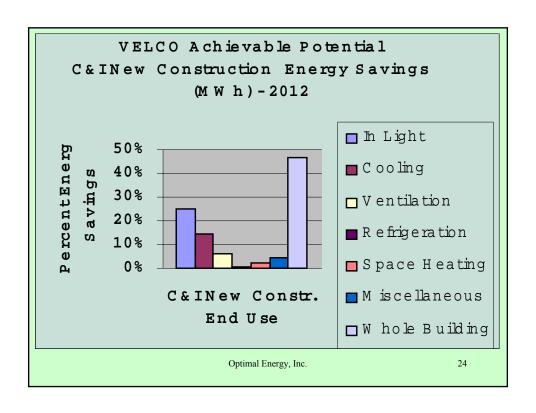
19

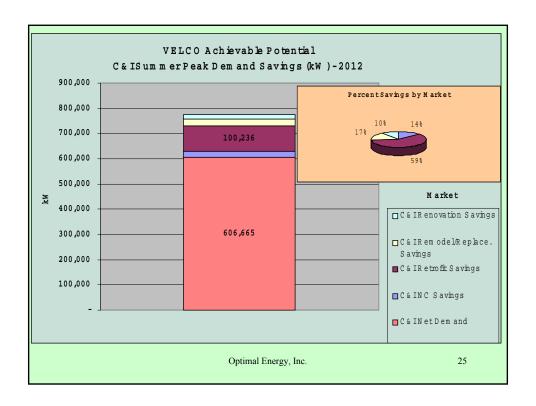
Commercial & Industrial Analysis Information Sources

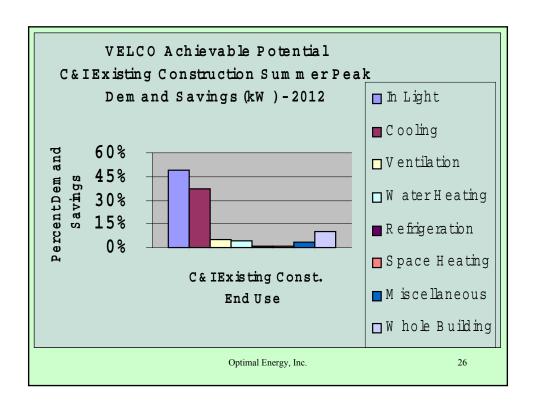
VT Statewide Update:


- Utility sales data by SIC
- ➤ US EIA Commercial Building Energy Consumption Survey
- ➤ National organizations (e.g., ACEEE, LBNL, NBI)
- Utility, statewide and regional baseline & market assessments for Northeast US
- > RER hourly load shapes by building type & end use
- > CEC energy efficiency database
- Manufacturers / Vendors


Optimal Energy, Inc.


84 Commercial & Industrial Technologies – 2,430 Measures


- > 4 markets:
 - New construction
 - Existing (Renovation; Remodel / Replacement; Retrofit)
- 11 Building Types Agriculture, Education, Grocery, Health, Industrial, Lodging, Office, Restaurant, Retail, Warehouse, Other
- 9 End Uses Cooling, Exterior Lighting, Interior Lighting, Office Equipment, Refrigeration, Space Heating, Water Heating, Whole Building, Miscellaneous


Optimal Energy, Inc.

