

Incorporating Energy Efficiency Impacts in Long-Term Forecasts

Arthur Maniaci

Supervisor, Load Forecasting & Energy Efficiency
New York Independent System Operator

ACEE Market Transformation Symposium

April 2, 2012 Washington, DC

The Roles of the NYISO

Reliable operation of the bulk electricity grid

 Managing the flow of power nearly 11,000 circuit-miles of transmission lines from more than 300 generating units

Administration of open and competitive wholesale electricity markets

 Bringing together buyers and sellers of energy and related products and services

Planning for New York's energy future

 Assessing needs over a 10-year horizon and evaluating projects proposed to meet those needs

Advancing the technological infrastructure of the electric system

 Developing and deploying information technology and tools to make the grid smarter

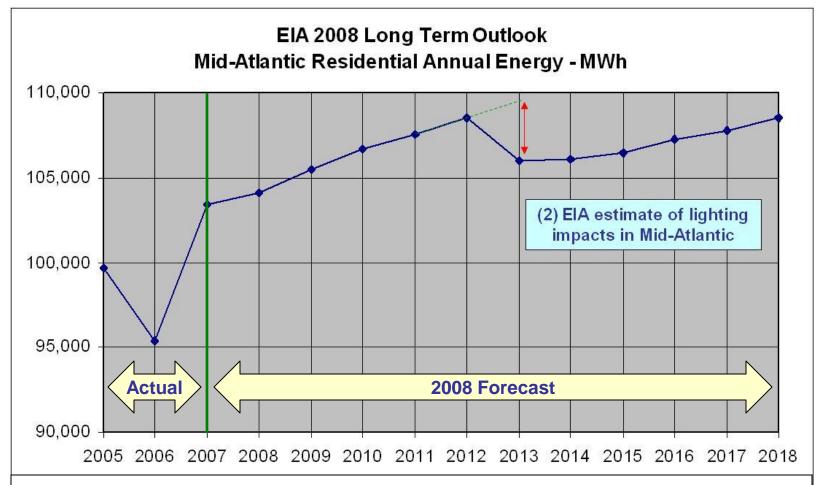
NYISO Long-Term Forecast Methodology

- Prepare econometric forecasts of monthly energy usage for a 10-year horizon
 - This includes naturally-occurring conservation
- Prepare energy efficiency forecasts
 - For each Program Administrator
 - Authorized spending levels, realization rates, net-to-gross ratios and budget utilization factors by program or portfolio
 - For Building Codes and Standards
 - Stock-based approach to include impacts of new appliance standards and building codes not otherwise included in econometric model
 - Market transformation impacts can be included as an additional impact, not otherwise accounted for

NYISO Long-Term Forecast Methodology (Cont.)

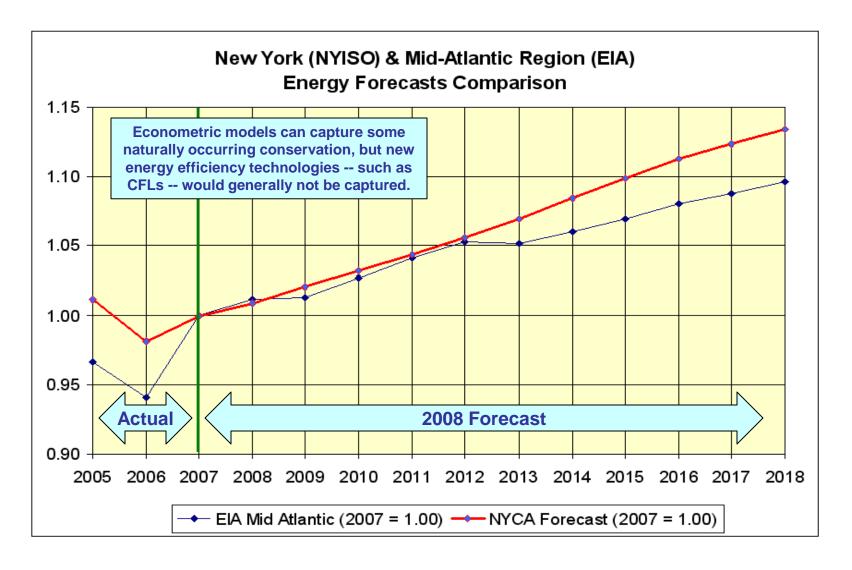
- Attribute impacts among programs
 - Naturally occurring impacts and market transformation is not formulaic due to overlaps
 - Objective is to neither over count nor under count Energy Efficiency impacts

EE Accounting: Adding Up All the Pieces


1. Develop top-down gross savings estimate of <u>achievable market</u> <u>potential</u> for specific measures, using end-use forecasting techniques

EE Potential = Customers * Savings per Customer * Percent Adoption

- 2. Estimate attribution percentages
 - Naturally occurring in econometric or end-use forecast
 - Impacts from Program Administrators
 - Impacts from Codes & Standards, not captured by econometric or end use models
 - Impacts from Market Transformation (if any)
 - Whole is equal to sum of parts
- 3. Perform reasonableness check & iterate as necessary
- 4. Account for overlaps -- avoid over-counting and under-counting


EIA 2008 Forecast

2008 EIA forecast included impact of CFLs in 2012 -- in addition to other federal codes and standards

EIA & NYISO 2008 Forecasts

Energy Efficiency Forecast Elements

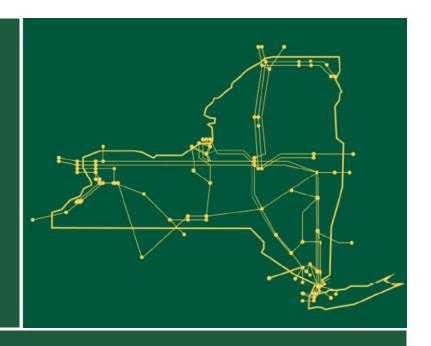
Explicit Impacts in Addition to Naturally Occurring Conservation

2012 Statewide Energy Efficiency Projections - GWh

Year	LIPA	NY PA	Codes & Standards	EEPS - NY SERDA	EEPS - Utilities	Expected Annual GWh	Expected Cumulative GWh
2012	351	45	255	607	661	1,919	1,919
2013	156	45	198	689	455	1,543	3,462
2014	314	45	154	653	487	1,678	5,140
2015	141	45	107	665	522	1,505	6,645
2016	240	45	103	465	380	1,258	7,903
2017	243	40	106	419	413	1,246	9,149
2018	177	40	105	305	265	917	10,066
2019	170	40	108	239	22	604	10,670
2020	130	40	109	239	17	560	11,230
2021	93	40	109	238	20	525	11,755
2022	86	40	87	238	13	489	12,244
GWh	2,101	465	1,441	4,757	3,255	12,244	

Recent Experience in NY

- Compact Fluorescent Light (CFL) program designed by the Program Administrator in 2008 -- providing funds to retailers to offset high initial cost of CFLs
- Market research initially indicated pre-program Net-to-Gross ratio of 160%
- Follow-up market research indicated Net-to-Gross ratio was about 40% for the first 18 months of the program
- Conclusion -- Market transformation had succeeded
- Although program net energy impacts were reduced, NYISO forecast included a portion of CFL impacts in its Codes and Standards accounting -- so that gross savings were not entirely eroded
- Reinforces need for frequent assessment of market conditions in order to properly assess program performance
 especially in rapidly changing markets



Literature Survey

- All These Years Measuring Free Ridership & Now We Measure A Portion of These As Caused by Market Transformation, Megdal, AESP Annual Meeting, 1996
- A Discussion and Critique of Market Transformation, York, Energy Center of Wisconsin, 1999
- Theory-Based Estimation of Energy Savings from DSM, Spillover, and Market Transformation Programs Using Survey & Billing Data, Kandel, ACEEE, 2002
- Market Transformation: Substantial Progress From a Decade of Work, Nadel et al, ACEEE, 2003
- Massachusetts Energy Efficiency Programs C&I
 Freeridership & Spillover Methodology Study, Tetra Tech &
 KEMA, NEEP Regional EM&V Forum, 2011

The New York Independent System Operator (NYISO) is a not-for-profit corporation responsible for operating the state's bulk electricity grid, administering New York's competitive wholesale electricity markets, conducting comprehensive long-term planning for the state's electric power system, and advancing the technological infrastructure of the electric system serving the Empire State.

www.nyiso.com