Transmission potential to contribute to CO2 reduction

2020 and beyond line haul perspective

Tom Stoltz, Chief Engineer, Eaton Vehicle Technology and Innovation

Mihai Dorobantu, Director, Eaton Vehicle Group

July 22, 2014
HD Transmission Technology Trends

Higher performance and complexity and deep integration

Manual

MT

AMT

Automated

Integration

Optimization

Evolution

Revolution

CVT?

EV?

Hybrid?

Dual-Clutch

Look-ahead

Time

Complexity / Performance

© 2014 Eaton. All Rights Reserved.
Transmission Optimization

Still opportunity to improve component efficiency

- In-Gear efficiency [0.5%-1%]
- Dry sump & lubricants [1%]
- Bearing losses [.25%]

- Light weighting is important:
 Potential to eliminate 300-500 lbs
 drives 0.3-0.5% fuel and 1% – 1.5% freight efficiency
 - Architecture
 - Materials (shafts and gears 60% of gearbox weight)

Steel torque carrying elements
Lightweight filling (polymer/C-fiber or Al)
Automation
Transition from Manual to AMT driven by fuel economy, shift to regional haul and driver demographics

Automated Mechanical Transmissions
- **2-4%** fleet average improvement based on average driver skill
- Allows small ratios in high gears **[1-2%]**
- Effortless shifts allow higher shift density: key enabler to downspeeding
- Rapid adoption in market: SmartAdvantage, Volvo XE, DT-12. 8% in 2010, 15% in 2013, +20% in 2014.
- Expecting 55-60% market penetration of AMT by 2018

Example: Eaton-Cummins SmartAdvantage
- Fully integrated engine & transmission
- 3-6% improvement over base engine (ISX 15L) and base transmission (UtraShiftPLUS LAS)
Powertrain integration

Automated Mechanical Transmissions
- AMT and mild engine downspeeding will be baseline line haul powertrain by 2020
- 3-6% improvement is shared between engine and transmission

Dual Clutch Technology
- reducing the power excursions in engine, eliminating 0-torque condition at shifts [1%-3%]
- Significantly better drivability
- Enable further engine optimization by narrowing operating band (eg turbo optimization)
- Enable aggressive downspeeding due to drivability, eg 900-1000 rpm at cruise, additional 2%
- Lower cruise speed or higher productivity [.5-2%]

Eaton-Cummins SmartAdvantage
- 3-6% improvement
- 1.5-3%: engine downspeeding from 1350 rpm to 1100 rpm at cruise
- 1.5-3%: special ratios, shift logic and integrated controls

Eaton DCT proof-of-concept transmission
- 11 ratios, progressive gearing
- Eliminate torque interrupt
- Maintains engine at full load during shifts
- 20% faster acceleration
Look-Ahead technologies

Improve driver performance for fuel economy: 3-4% fleet average improvement

• Unique features: accounts for
 • Driver behavior
 • Real time traffic conditions
 • Non-intrusive in cabin, shaves unnecessary acceleration peaks

• Seamless integration
 • With and without cruise control
 • Terrain and route (GPS, grade)
 • Route specifics (speed limits)

• Compatible with eco-roll type features
Long-term: Low-CD increases HD hybrid potential

Competing trends: eco-roll, platooning, base engine efficiency

<table>
<thead>
<tr>
<th>Cd</th>
<th>0.8</th>
<th>0.65</th>
<th>0.55</th>
<th>0.35</th>
</tr>
</thead>
<tbody>
<tr>
<td>2% grade power</td>
<td>522</td>
<td>479</td>
<td>450</td>
<td>391</td>
</tr>
<tr>
<td>MPG (65mph)</td>
<td>6.5</td>
<td>7.6</td>
<td>8.6</td>
<td>11.4</td>
</tr>
<tr>
<td>-2% grade power</td>
<td>-29</td>
<td>-72</td>
<td>-102</td>
<td>-160</td>
</tr>
<tr>
<td>HD hybrid (50% brake regen)</td>
<td>507</td>
<td>442</td>
<td>399</td>
<td>311</td>
</tr>
</tbody>
</table>

Simplifying Assumptions
- 50% BTE engine
- Mild grades
- Constant speed 65mph
- 80,000 lbs truck

Fuel burn [gals]
- 2010: 13158
- 2014: 8772

Hybrid benefit
- 2010: 2.6%
- 2014: 9.9%

Hybrid fuel save [gals]
- 2010: 336
- 2014: 867

Hybrid fuel save $
- 2010: $1,343
- 2014: $3,468

20kWh battery pack
- Today $10-20k, future = $5-8k??
Key points

Line haul entitlement: 4.5–8% from advanced transmission, 1.5-5% from engine, 2-4% from driver improvement and 2-10% hybrid

• **NRC 2010 study** attributed 2% improvement entitlement to driveline, focused on mechanical efficiency of gears in transmissions and axles.
 • SuperTruck and other developments relevant to 2020 timeframe go well beyond that number.
 • Preliminary 2014 NRC report recognizes potential of transmission and engine-transmission integration but does not quantify it.

• **Four sources of CO2 reduction associated with transmissions**
 • More efficient transmissions, minimizing mechanical losses and light weighting. [2%-3%]
 • Optimized gear rations and automation that reduces driver variability and misuse [1.5%-3%]
 • Transmission integrated with engine: enabling downsizing, downsizing, reduced engine transients, excursions [1.5%-5%]
 • Transmission integrated with the vehicle: reducing power loss [1%-2%], hybrids [2%-10%], shifting based on driving environment (aka making average drivers better) [2%-4%]

• **Key transmission technologies**
 • Gearbox enhancements
 • Transition from manual to automation to dual clutch
 • Deep integration with engine enabling powertrain optimization: downspeeding and narrow-banding engine operations
 • Integration with the driving environment: Look-Ahead
 • Hybridization and related technologies