

The Stochastic Energy Deployment Systems (SEDS) Model

Michael Leifman

US Department of Energy, Office of Energy Efficiency and Renewable Energy

Walter Short and Tom Ferguson

National Renewable Energy Laboratory

Presented at:

Energy and Economic Policy Models: A Reexamination of Some Fundamental Issues

The University of California and the American Council for an Energy-Efficient Economy

November 16th and 17th, 2006

Outline

- Motivation(s)
- Model Description
- Sample Results
- Next Steps

Motivations Who Needs ANOTHER Energy Model?

The SEDS "project" is a model and a strategy, aimed at rectifying multiple ills

- Models are the tools we love to hate
- Black boxes and distrust
- Market imperfections of the "modeling market"
- Hard wired and hidden assumptions (>> more distrust)
- Slow-to-glacial run time
- Modelers' are not always subject experts
- False precision of inputs parameter uncertainty
- False precision of relationships, dynamics or drivers framing or model uncertainty
- False precision of outputs(>>more distrust)

- They are widely vetted
 - Requires development/use by a wide community

They are widely used

- By decision-making staff
- Requires user-friendliness, quick run time, easy input, transparency/trackability, well-documented, easy access, inexpensive software

• They are flexible - able to accommodate:

- Market diversity
- Changes
- Constraints

They are built with specific uses in mind

- Markets, technologies, policies, metrics
- Major drivers emphasized

Motivations The World is Stochastic

Motivations What Might a Stochastic Model Show You?

Likelihood of RE capacity in 2050

- "..develop an energy modeling capability that explicitly takes into account the uncertainties that we all know exist.."
- Focus on the major market drivers keeping SEDS "relatively simple."
- "..facilitate the on-site direct use of SEDS" by DOE staff and others.
- Bring a wide range of modelers into the development process to ensure quality and widespread use.

Model Description SEDS General Description

- Model of U.S. energy markets: currently only electric sector capacity expansion and alpha version of light duty vehicle transport
 - All major electric prime mover types coal, gas, nuclear, hydro
- 2010 to 2050 in 5-year increments
- Explicit treatment of uncertainty with Latin Hypercube simulation
- Simulation not optimization, lack of foresight
- Single national region
- Engineering/economic costs and efficiencies
- Endogenous technology change through learning curves
- Base, intermediate, and peak power markets
- Logit market share for new capacity
- Renewable energy supply curves
- Least cost dispatch
- Planned and economic plant retirements

Model Description SEDS Modules and Routine

UC / ACEEE workshop, November 17, 2006

USDOE • EERE

Policy/environment

- Climate change
- Production Tax Credit
- Nuclear builds = f (climate change, Yucca Mtn, etc.)

Fossil fuel prices

- Natural Gas, Oil and Coal

Technological advances (e.g \$/kW, capacity factor)

- Due to R&D
- Due to learning

The Economy

- Electric demand
 - Growth
 - Elasticity

- No knife-edge responses
- Logit market share algorithm
- Capable of capturing non-optimal behaviors
- Relatively quick run times

Especially important in a stochastic model

 Don't want modeled investors to know the outcome of future uncertainties

Doesn't know:

- Future fuel prices
- Future technology improvements
- Future policies
- Future loads
 - Build to model's expectations dispatch to model's reality

Model Description Regions in SEDS

- For transparency and quick run times, SEDS electric market has a single national region, but:
 - We're investigating the tradeoffs associated with having more electric regions
 - Single electric region may be feasible because:
 - Logit market share captures diversity
 - Supply curves capture renewable energy heterogeneity
 - May be able to incorporate some reduced form version of optimal power flow modeling using response surface or neural network
 - Other sectors could have more regions, even if electric sector retains only one region

Model Description Renewable Resource Curves

UC / ACEEE workshop, November 17, 2006

USDOE • EERE

Designed explicitly for uncertainty analysis

- Operable in deterministic or stochastic mode
- Easy to input different probability distributions
- Correlated inputs
- Conditional probabilities
- Bivariate distributions
- Many forms of uncertainty related outputs
 - Confidence intervals
 - Statistics mean, mode, median, std deviation, min, max
 - Spearman correlation

Built for self documentation

- Graphical portrayal of functional relationships
- Function boxes show equations, inputs, outputs, descriptions, relationships

No-cost, run-only version easily downloadable from net

Model Description: Parameter Uncertainty Technology Cost & Performance

Price Driven

-Price and Reliability Driven

100%

75%

50%

25%

Model Description: Parameter and Market Uncertainty Market Diversity – Logit Market Share

• Market prices are widely divergent across the U.S.

U.S. Market Share of a Power Provider

Multinomial logit can use

more than just price to

20

- Eventually, modeled fuel prices will reflect resource depletion, new sources, refining, distribution and uncertainties
- Currently, uncertainty in fuel prices expressed through uncertainty in an annual price growth multiplier g_t [P_t = $(1+g_t)P_{t-1}$]
- Oil price determined by three random variables
- Gas and coal prices determined by uncertainty in their annual price growth multipliers and correlation with oil price

Model Description: Input Parameter Uncertainty Sample Stochastic Input – Natural Gas

• The evolution of Natural gas price pathways" over time are simulated using Monte Carlo simulations

• Inputs and outputs are easily shown using using bands (or confidence intervals)

Model Description: Parameter and Market Uncertainty Oil Price Uncertainty

- Annual price growth before "Peak Oil"
- Time to "Peak Oil"
- Annual price growth after "Peak Oil"
- Later version will have representation of world oil market based on D. Greene

Expected Oil Price (\$/Bbl)

Model Description: Policy Uncertainty Modeling Carbon Value Uncertainty

Sample Results Renewable Capacity

• A stochastic model's projection can yield insights not visible with deterministic models

Sample Results **Nuclear Capacity**

UC / ACEEE workshop, November 17, 2006

USDOE • EERE

Sample Results Coal Capacity

- Uncertainty Increases with Time
- A Bimodal Energy World Driven by Carbon Policy Uncertainty

Sample Results Information Presentation Variety

Next Steps and Potential Collaboration

- Investigation of important uncertainties (NETL)
- Macroeconomic Module (LBNL/ANL)
- Liquid and Gas Fuels (ANL/ NETL)
- Residential and Commercial Sectors (LBNL/PNNL)
- Industrial Sector (LBNL/PNNL)
- Transportation Sector (ORNL/NREL/ANL)
- "Lite" vs. "Full" versions
- Regionalization or representation of regionalization's effects
- Hydrogen
- Transmission (LBNL)
- Nuclear Fuel Cycle (BNL)
- Option value