

Strategic Investments in Residential Energy Efficiency: Insights from NE MARKAL

Michelle Manion and Gary Kleiman NESCAUM

Jason Rudokas

Whittemore School of Business, UNH

Energy and Economic Policy Modeling Workshop: "A Reexamination of Some Fundamental Issues" ACEEE and University of California November 16-17, 2006

About NESCAUM

- NESCAUM is a non-profit association of air quality agencies in 8 Northeastern states (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont, New Jersey, and New York).
- Staff of thirty scientists, modelers, policy analysts, economists, and communications experts providing technical and policy analysis, outreach, and communications to the NE states on climate, energy, and air quality policies and issues.
- Our integrated modeling framework serves as a platform for much of our air quality, energy, and climate policy work.

Northeast Center for Atmospheric Science and Policy (NCASP)

- NESCAUM, the University of New Hampshire, and NOAA are collaborating through NCASP to:
 - Link atmospheric science and policy research, and
 - Identify the most effective regional opportunities and initiatives
- We focused on residential heating sector for initial study because:
 - Fossil-intensive sector that represents nearly 15% of New England energy consumption and GHG emissions
 - Underserved by state and utility efficiency programs
- Using the NE MARKAL energy model, we are:
 - Modeling efficiency improvements in residential heating (i.e., upgrading thermal shell)
 - Generating estimates of associated reductions in fuel use, GHGs, and costs

NE MARKAL Energy Model Overview

Energy System Interactions

What NE-MARKAL Is (and what it is not!)

- Excellent tool for long-term policy exploration and analysis (*not a forecasting tool or dispatch model*)
- Provides big-picture, multi-sectoral overview of regional programs (*not as detailed for any one sector, e.g., IPM*).
- Optimizes based on lowest-cost patterns of technology deployment over time (*not predictive of behavior unless motivated by cost*)

Representing technologies in **Bottom-Up** Models

- Each technology is characterized in detail by technical and economic parameters.
- Uncertainty about the value of technical parameters (at least in the long term).
- Large degree of uncertainty about some economic parameters (in short term and long term).

The Problem with "Hurdle Rates"

Average Hurdle Rates for Energy Efficiency Investments

Study	End-Use Type	Average rate		
Arthur D Little (1984)	Thermal shell measures	32%		
Cole and Fuller (1990)	Thermal shell measures	26%		
Goett (1978)	Space heating system and fuel type	36%		
Berkovec, Hausman and Rust (1983)	Space heating system and fuel type	25%		
Hausman (1979)	Room air conditioners	29%		
Cole and Fuller (1980)	Refrigerators	61-108%		
Gately (1980)	Refrigerators	45-300%		
Meier and Whittier (1983)	Refrigerators	34-58%		
Goett (1983)	Cooking and water heating	36%		
Goett and McFadden (1982)	Water heating fuel type	67%		
Source(s): Sandstad <i>et al.</i> (1995); Train (1985).				

NESCAU	M

Uncertainties about impacts of MARKAL's "legacy" hurdle rates for residential heating technologies motivated this study.

Vintage technologies were collapsed into one technology where key parameters evolve over time. (Examples)

Technology	Drate	Eff	Fixom	Invcost	Start
Electric Air Source Heat Pump #1	0.18	1.99	0.48	5.96	2002
Electric Air Source Heat Pump #1	0.18	2.20	0.57	7.12	2011
Electric Air Source Heat Pump #2	0.44	2.38	0.63	7.83	2011
Electric Air Source Heat Pump #2	0.44	2.46	0.63	7.89	2020
Electric Fumace #0	0.18	1.01	0.21	2.62	2002
Electric Fumace #0	0.44	1.05	0.23	2.89	2011
Electric Fumace #1	0.18	1.00	0.24	2.95	2002
Electric Fumace #1	0.6	1.10	0.25	3.15	2011
Electric Ground Source Heat Pump #1	0.8	3.40	1.63	20.40	2002
Electric Ground Source Heat Pump #1	0.8	3.40	1.64	20.52	2005
Electric Ground Source Heat Pump #1	0.8	3.80	1.64	20.52	2020
Kerosene Fumace N	0.18	0.78	0.59	7.37	2002
Natural Gas Fumace #1	0.18	0.78	0.21	2.62	2002
Natural Gas Furnace #2	0.44	0.80	0.23	2.84	2002
Natural Gas Furnace #3	0.44	0.82	0.24	3.06	2002
Natural Gas Furnace #4	0.44	0.92	0.33	4.15	2002
Natural Gas Furnace #4	0.44	0.92	0.31	3.93	2005
Natural Gas Furnace #4	0.44	0.92	0.30	3.72	2011
Natural Gas Fumace #4	0.44	0.92	0.28	3.50	2020
Natural Gas Furnace N	0.18	0.76	0.18	2.23	2002
Natural Gas Heat Pump #0	0.18	1.40	1.06	13.22	2002
Natural Gas Heat Pump #0	0.18	1.50	1.06	13.22	2020
Natural Gas Radior #1	0.24	0.80	0.43	5.42	2002
Natural Gas Radior #2	0.44	0.87	0.54	6.70	2002
Natural Gas Radior #2	0.44	0.89	0.54	6.70	2011
Natural Gas Radior N	0.18	0.72	0.40	5.04	2002
Oil Fumace #1	0.24	0.80	0.23	2.84	2002
Oil Fumace #2	0.44	0.82	0.24	3.06	2002
Oil Fumace #3	0.44	0.87	0.33	4.15	2002
Oil Fumace N	0.18	0.78	0.22	2.76	2002
Oil Radiator #1	0.24	0.76	0.43	5.42	2002
Oil Radiator #2	0.44	0.82	0.54	6.70	2002
Oil Radiator #2	0.44	0.89	0.54	6.70	2011
Oil Radiator N	0.18	0.72	0.42	5.26	2002
Propane Fumace #1	0.18	0.78	0.21	2.62	2002
Propane Fumace #2	0.44	0.80	0.23	2.84	2002
Propane Fumace N	0.18	0.76	0.21	2.57	2002

Assessing the effect of "Hurdle Rate" Assumptions in NE-MARKAL

Objectives of Hurdle Rate Exercise

- How sensitive are key model results to uniform changes in the hurdle rate?
 - Fuel Use
 - Emissions
 - Investment patterns
 - System Cost
- How would key model results change if we use policy to drive hurdle rates down for energy-efficient technologies?
- If policy can influence hurdle rates, what should the policy goal be?

Hurdle Rate Study Scenarios and Methods

- Case 1: Isolate the effect of the hurdle rate on key model results
 - Set all residential heating technologies at uniform hurdle rates (10%, 20%, 30%, 40%) and compare key model results
- Case 2: Promoting high-efficiency technologies
 - Identify high-efficiency technologies and lower the hurdle rates only for these technologies
 - 2a (AEO ref fuel price)
 - 2b (AEO ref fuel price +20%)

Case 1: Isolating the Effect of Discount Rates

Fuel Use

Residential Heating Sector Fuel Use

CO₂ Emissions

Total Residential Sector CO2 Emissions

Changes in CO₂ Emissions

Change in Residential Sector CO2 Emissions Level

Investment Levels

Investment in Residential Heating Technologies

Changes in Investment Levels

Investment Change in Residential Heating Technologies

System Cost

	Dollars Per Ton of
Scenario	CO2 Reduction
20% vs 10%	\$39.40
30% vs 20%	\$90.40
40% vs 30%	\$151.51

Residential Heating Sector System Cost

Case 2: Promoting High Efficiency Technologies

Technical and economic characteristics of residential heating technologies

Residential Heating Technologies

Discount Rate Structure for promoting investment in high efficiency technologies

Discount Rate

Technology	Case 2 High	Case 2 Med	Case 2 Low
Elec Ground Src HP 1	0.4	0.15	0.1
Elec Ground Src HP 2	0.4	0.15	0.1
Gas Heat Pump Base	0.3	0.3	0.15
Elec Air Src HP 1	0.2	0.1	0.1
Elec Air Src HP 2	0.2	0.1	0.1

Case 2a: AEO Reference Fuel Price

Fuel Use

Residential Heating Sector Fuel Use (Petajoules)

CO₂ Emissions

Total Residential Sector CO2 Emissions

Investment Levels

Investment in Residential Heating Technologies

System Cost

Residential Heating Sector System Cost

Case 2b: AEO Ref Fuel Price +20%

Fuel Use

Residential Sector Fuel Use (Petajoules)

CO₂ Emissions

Total Residential Sector CO2 Emissions

Investment Levels

Investment in Residential Heating Sector Technologies

System Cost

Residential Sector System Cost

Case 2 High

Case 2 Med

Case 2 Low

Differences Between AEO High Price and Policy/Price Scenario

Ratio of Final Energy to Useful Energy (Residential Heating)

Observations on NE-MARKAL

- We gained a few critical insights on NE-MARKAL's behavior and responsiveness—
- Technology-specific hurdle rates have significant influence on key model results (fuel use, GHGs, cost)
- Threshold effects are observed for hurdle rates between 10% and 20% for this set of technologies
- Patterns of investment are less clear, but policy/price signals do seem to induce stronger diffusion of high-efficiency technologies
- Need to better understand what criteria should be used to more to develop robust hurdle rates (e.g., explore income effects)

Policy Insights and Challenges

Our efforts to explore GHG policies that target the residential sector should consider the following:

- Climate policies that aim to shift consumer preferences (i.e., hurdle rates) could have great impact if effective, esp. given limited opportunities for fuel-switching in region
- Marketplace for residential heating technologies is highly bifurcated into:
 - many lower cost, medium-efficiency products, AND
 - a few very high cost, high-efficiency products

NESCAUM

• High degree of uncertainty about future consumer preferences, especially in a high fuel price environment

The Clean Air Association of the Northeast States

www.nescaum.org