

Representation of Industrial Energy Efficiency Improvement in Integrated Assessment Models

Jayant A. Sathaye and Christie Galitsky Lawrence Berkeley National Laboratory, Berkeley, CA

Fabian Wagner

International Institute for Applied Systems Analysis, Vienna

Presented at the Workshop on

Energy and Economic Policy Models: A Reexamination of Some Fundamental Issues Washington DC, November 16-17, 2006

With inputs from Ernst Worrell and Amol Phadke

k supported by US Department of Energy. Office of Science, Biological and Environmental Research Prog

Presentation Contents

BERKELEY LAB

- Integrated assessment (IA) models
- Demand-side cost curves
- Updated cost curves for US steel and cement sectors (preliminary results)
- Representing US cost curves in a IA model (preliminary results)
- Conclusions

- Long term perspective
 - Cost-effective implementation strategies
 - Least-cost emissions reduction pathway
- Emissions baseline is critically important to determining costs
 - Defines the size of the reduction required to meet a target

models: Cost estimates differ widely

- Differences can be traced to assumptions about
 - economic growth
 - resource endowments
 - choice of policy instruments
 - extent of no-regrets options
 - cost and availability of new supply- and <u>demand</u>-side technologies
 - technological change
- This presentation will focus on the last two items and reflects work in progress and preliminary results

1990, single region, no trading

- Factors that could increase costs:
 - Transaction costs
 - Hidden costs, such as the risks of using a new technology
 - Rebound effect
 - Real preferences of consumers
- Factors that could reduce costs:
 - Technological change over time
 - Complete accounting of benefits
 - Policies that remove costlier barriers

ransaction Costs iniliaence Supply of Traded Carbon

Ket?

- Indian Institute of Science (Forestry), LBNL (Household woodstoves)
- **Oregon Climate Trust (Forestry, energy efficiency, renewable energy)**
- Natural Resources Canada (Forestry)
- Trexler and Associates (Methane, large power plants, energy efficiency, carbon capture)

Data Set 2: (13 projects)

- Ecofys (renewable energy)
- Ecoenergy (bagasse cogeneration)

Data Set 3: (50 projects) –

Swedish AIJ Programme (Energy efficiency and renewable energy)

Data Set 4: (10 projects)

- **Global Environmental Facility**
- Transportation, energy efficiency, renewable energy

Supply Demand Transaction costs

Emissions Reduction from Offsets Pro

Transaction Costs of Multiple Types of Projects

	Dependent variable:
	Log (Total Transaction Costs (USD))
ndependent variables:	
C (log)	.56**
	(.08)
oractry	-1.04**
Diestry	(.40)
	-59
nergy Efficiency	(.36)
	34
ultiple objectives	(.30)
A .	.75*
. America	(.45)
	24
SIA	(.41)
	49*
ature	.27
	6.08**
onstant	(1 00)
	(1.00)
2	.69
	48

Statistical significance at the 10% level Statistical significance at the 5% level or better

- Statistical analysis to determine significant influence on costs of
 - Project Size
 - Multiple benefits
 - Technology demonstration social development, other environmental benefits
 - Forestry, energy efficiency and renewable energy dummies
 - Regional dummies Asia and Latin America
 - Mature vs. nascent markets

rrrrr

	Parameter Affected	CCE Effect	Total CCE	Penetration Reduction Effect	Total Red'n	Adopting Stock in 2005	Lifetime GWh Savings from 2005 Purchases	Explanation	Policies & Programs	Xener Varia
1	N/A	N/A	\$0.031	N/A	N/A	132,770,3 14	60,543	These are the initial values before barriers are applied.	N/A	N/A
line	ES	N/A	\$0.031	5%	5%	126,131,7 98	57,516	The estimated California market share of CFLs in 2005.	N/A	Not Comp Factor
/e	ES	N/A	\$0.031	1%	6%	124,870,4 81	56,941	Assumes a small number of HH pay a flat fee for electricity.	N/A	Applic ty Fac
-In lo not re)	ES	N/A	\$0.031	20%	25%	99,896,38 4	45,553	The number of fixtures that do not accommodate CFLs.	N/A	Feasib Factor
ıct ility	ES	N/A	\$0.031	20%	40%	79,917,10 8	36,442	Assumes some rural population and some lower income urban population do not have nearby stores selling CFLs.	Utility-run purchase by mail programs	N/A
ime inty	LT	\$0.007	\$0.038	16%	49%	67,316,13 5	23,022	Lifetime reduced by two thousand hours to reflect uncertainty over product lifetime.	Consumer education on CFL testing and reliability	N/A
ict tion	K	\$0.048	\$0.086	72%	86%	18,970,88 9	6,488	Assumes one-half hour needed (at \$20 time value per hour) for consumers to educate themselves about CFLs.	Consumer awareness campaign on benefits of CFLs	Aware Functi
or tion	К	\$0.024	\$0.110	44%	92%	10,696,43 4	3,658	Assumes one quarter hour needed to find nearby vendors with CFLs.	Product and vendor lists for consumers	Aware Functi
umer nce, uality	K	\$0.024	\$0.134	40%	95%	6,459,449	2,209	Assigns a \$5 penalty to CFLs to reflect consumer preference for familiar incandescent light and shape.	Consumer awareness about CFL improvement s	N/A

Presentation Contents

BERKELEY LAB

- Integrated assessment (IA) models
- Demand-side cost curves
- Updated cost curves for US steel and cement sectors (preliminary results)
- Representing US cost curves in a IA model (preliminary results)
- Conclusions

Accounting for Changes in Capital Costs and Reduction in Energy due to an Energy Efficiency Measure

where:

CCE = Cost of Conserved Energy for the energy efficiency measure, in \$/GJ

I = Capital cost (\$)

q =Capital recovery factor

S = Annual energy savings (GJ)

d = discount rate

n = lifetime of the conservation measure (years)

electricity efficiency improvements in US residences

in Capital, Labor and Material Costs

$$CCE = \frac{I \cdot q + M}{S}$$

$$q = \frac{1}{(1 - (1 + d)^{-n})}$$

where:

CCE = Cost of Conserved Energy for the energy efficiency measure, in GJ

I = Capital cost (\$)

q =Capital recovery factor

M = Annual change in labor and material costs (\$)

S = Annual energy savings (GJ)

d = discount rate

n = lifetime of the conservation measure (years)

Other Benefits

BERKELEY	LAE

Waste	Emissions	Operation & Maintenance
se of waste fuels, heat, gas	Reduced dust emissions	Reduced need for engineering controls
educed product waste	Reduced CO, CO2, NOx, SOx emissions	Lowered cooling requirements
educed waste water		Increased facility reliability
educed hazardous waste		Reduced wear and tear on equipment/machinery
aterials reduction		Reductions in labor requirements
Production	Working Environment	Other
creased product output/yields	Reduced need for personal protective equipment	Decreased liability
proved equipment performance	Improved lighting	Improved public image
orter process cycle times	Reduced noise levels	Delaying or Reducing capital expenditures
proved product quality/purity	Improved temperature control	Additional space
creased Reliability in oduction	Improved air quality	Improved worker morale

JS Steel Industry Supply Curves: Accounting for nanges four categories of benefits (previous slide)

Benefits double cost effective energy efficiency potential to 19%

Changes in Other Benefits on Cost-Effectiveness and Ranking of Measures

	With Energy (E) Benefit Only			With O	S			
Measure	CCE	Rank	Cost-	CCE	Rank	Cost-		
	(\$/GJ)	(of 47)	Effective?	(\$/GJ)	(of 47)	Effective?		
Inj. of NG – 140	3.1	19	NO	-0.5	8	YES		
Coal inj. – 225	3.9	22	NO	1	23	YES		
Coal inj. – 130	4.4	23	NO	0.1	11	YES		
DC-Arc furnace	5	26	NO	-1.3	6	YES		
Process control	5.6	27	NO	-2.1	5	YES		
Scrap preheating	6.7	31	NO	-0.6	7	YES		
Thin slab casting	8.5	35	NO	1.9	27	YES		
Hot charging	8.9	36	NO	5.3	35	NO		
FUCHS furnace	12.7	37	NO	-3.5	3	YES		
Adopt cont. cast	14.3	39	NO	-3.5	2	YES		
Twin shell	16.6	40	NO	3.3	30	NO		
Oxy-fuel burners	17.4	41	NO	-5.5	1	YES		
Bottom stirring	20.5	45	NO	-2.4	4	YES		
Foamyslag	30.1	46	NO	7.2	40	NO		
NOTE: These cost of	conserved er	nergy (CCE) a	and cost-effec	ctiveness calo	culations are l	based on a		
discount rate of 30%	discount rate of 30% and an average primary energy price of \$2.14/GJ.							

Presentation Contents

BERKELEY LAB

- Integrated assessment (IA) models
- Demand-side cost curves
- Updated cost curves for US steel and cement sectors (preliminary results)
- Representing US cost curves in a IA model (preliminary results)
- Conclusions

US Cement Industry

Cement: amount of raw materials input; clinker produced (clinker to cement ratio); wet and dry cement produced; types and ages of kilns)

	1994		20	04
	(Mt)	(%)	(Mt)	(%)
Raw materials input	123		165	
Total Clinker Production	68.5		88.2	
Wet Clinker production	19.5	29%	16.9	19%
Dry Clinker production	49.0	71%	71.3	81%
Total Cement	74.3		99.0	
Wet cement production	21.2	29%	20.2	20%
Dry cement production	53.1	71%	78.8	80%
# Kilns Wet	71		52	
Dry (preheater, precalciner, long)	132		134	
Average age (years)	27		36	

urces: USGS and PCA, various years for throughputs; PCA and Major Industrial PI abase (MIPD) for kiln technologies

cement production

	19	94	2004		
	Primary	Primary	Primary	Primary	
Process Stage	Energy	Intensity	Energy	Intensity	
	PJ	GJ/t	PJ	GJ/t	
Wet Cement Production					
Raw Materials Preparation	11	0.3	7	0.2	
Clinker Production	124	6.3	100	5.9	
Finish Grinding	13	0.6	12	0.6	
Total Wet	148	7.0	119	5.9	
Dry Cement Production					
Raw Materials Preparation	33	0.4	53	0.4	
Clinker Production	230	4.7	349	4.9	
Finish Grinding	34	0.6	48	0.6	
Total Dry	296	5.6	450	5.7	
Total All Cement	444	6.0	569	5.7	

Sources: USGS, MECS, PCA, COWIconsult, CANMET (Canada), Lowes (UK), Folsberg, Ellerbrock, Holnan, ISTUM

		1994	ł	2004			
	PJ	Share	Price	PJ	Share		Price
Electricity	37	10%	\$ 4.01	48	13%	\$	4.46
Fuel Oil (Dist.+resid)	2	1%	\$ 3.56	4	1%	\$	4.58
Gas	25	7%	\$ 2.35	15	4%	\$	4.09
LPG	0	0%	\$10.19	0	0%	\$	14.82
Coal	211	59%	\$ 1.71	173	47%	\$	1.83
Coke	58	16%	\$ 2.25	80	22%	\$	0.96
coal coke	9	2%		0	0%		
petroleum coke	49	14%		80	22%		
Other	26	7%	\$ 1.07	49	13%	\$	1.07
Tires -waste	3	1%		11	3%		
solid-waste	1	0%		3	1%		
Liquid-waste	21	6%		36	10%		

Sources: MECS, various years

1. Structural Changes in the Steel Industry

BERKELEY LAB

Sources: IISI, various years

	1994	2002
EAF Steelmaking	36	51
EAF Casting	50	46
EAF Hot Rolling	48	42
EAF Cold Rolling and Finishing	0	0
Total Secondary Steelmaking	36	51

Sources: AISI, various years

production

	Throughput (Mtonne)		Primary (GJ/t p	Intensity product)
	1994	2002	1994	"2002"
Integrated Steelmaking				
Sintermaking	12.1	8.9	2.6	2.6
Cokemaking	16.6	11.4	4.9	0.9
Ironmaking	49.4	40.2	13.9	11.6
BOF Steelmaking	55.4	50.1	0.7	0.6
BOF Casting	59.1	50.0	0.8	0.6
BOF Hot Rolling	48.3	41.6	5.4	6.5
BOF Cold Rolling and Finishing	31.7	33.4	2.8	2.7
Secondary Steelmaking				
EAF Steelmaking	35.9	50.8	5.5	4.7
EAF Casting	49.5	45.7	0.2	0.3
EAF Hot Rolling	48.3	41.6	3.5	5.2
EAF Cold Rolling and Finishing	0	0	0	0
Total Primary and Secondary Steelmaking	91.22	100.9	20.5	16.2

Berkeley Lab

Sources: AISI

various years for throughput; Margolis (for DOE) 1994 and 2000 for intensities

	Energy Prices						
	Energy Mix (PJ)			(\$/GJ)			
	1994	2002	ſ	2002			
Residual Fuel Oil	42	*	\$	2.47	\$ 4.06		
Distillate Fuel Oil	*	12	\$	4.89	\$ 2.37		
Natural Gas	483	418	\$	2.41	\$ 3.69		
Coal	901	509	\$	1.69	\$ 1.83		
Coke	538	538	\$	2.25	\$ 2.25		
Electricity	148	184	\$	10.40	\$ 9.86		

* data withheld

Sources: MECS, various years

om 1994 to 2004 (cement) or 2002 (steel) in efficiency

- Technology changes for each individual existing technology
 - Updating costs of technology
 - Updating energy savings relative to current industry practices
 - Applicable share of production for the technology in new year
- Technology changes –new technology additions which came onto the market (cement only)
 - Requires cost, energy and applicable share of production data for each new technology
- Comparison of inclusion of energy-only and total benefits

including total versus only energy benefits

.....

2004 and 1994 (30% discount rate)

BERKELEY LAB

integrated, secondary and combined (30% discount rate)

rrrr

(Final) Energy Savings (GJ/tonne steel)

benefits - integrated, secondary and combined (30% discount rate)

cccc

(Final) Energy Savings (GJ/tonne steel)

Presentation Contents

BERKELEY LAB

- Integrated assessment (IA) models
- Demand-side cost curves
- Updated cost curves for US steel and cement sectors (preliminary results)
- Representing US cost curves in a IA model (preliminary results)
- Conclusions

- COBRA was developed using
 - LBNL data and expertise on bottom-up countryspecific models of energy sector mitigation costs and potential,
 - combined with global IEA, WEA, and SRES data
 - assumes perfect foresight
- Includes 10 global regions, tracks carbon emissions decadally for 16 energy sources and demand sectors, including five industrial sectors, under a stabilization constraint and/or carbon price

ource: Wagner and Sathaye, 2006

COBRA: A Linear Programming Model

- Small and fast, appropriate for sensitivity analysis
 - treatment of no regrets options
 - energy and total costs of industrial options
 - technological change
 - discount rates
 - alternative stabilization levels and/or carbon prices
- Model discount rate is 4%
 - Steel and cement cost curves were derived at 15% discount rate

Key Cases Analyzed Using COBRA

- Model is calibrated to SRES A1B scenario
- Baseline with and without no-regrets options (NROs)
 - instantaneous penetration of NROs
 - slowed penetration of NROs
- Baselines vs. mitigation at alternative carbon prices
- Energy cost vs. all benefits cost curve
- Technological change vs. no technological change

US Iron and Steel

....

include energy and non-energy benefits

Fuel Mixes: US Iron & Steel

rrrr

US Cement

US Cement

cement sector

rrrr

Surves (Include both energy and other benefits)

rrrrr

(Final) Energy Savings (GJ/tonne steel)

Energy Efficiency in the Steel Industry – Electric Arc Furnace

.....

Conclusions

- BERKELEY LAB
- Detailed technology representation provides insight and understanding of technology anf fuel mix choices
- Inclusion of non-energy benefits increases emissions reductions
- Bottom-up cost curves provide another approach for modeling technological change
 - Technological change increases emissions reduction
 - With a carbon price, potential is lower compared to only priceinduced emissions