Tools To Measure The Non-Energy Benefits of Clean Energy

Niko Dietsch

ACEEE Workshop on Valuation of Non-Energy Benefits Washington, DC

July 19, 2007

The Clean Energy-Environment State Partnership

Guidance:

Clean Energy-Environment Guide to Action: Policies, Best Practices and Action Steps for States

Quantifying State Emissions:

- **State GHG Inventory Tool**
- **NACAA Clean Air and Climate Protection Software**
- **E-Grid**
- E-Calc

Coordination with Other Voluntary Programs:

- **Green Power Partnership**
- SEBA. **CHP** Partnership
 - National Action Plan for Energy Efficiency

Clean EnergyEnvironment

Evaluating Clean Energy Policy **Options:**

- CACPS Policy Assessment Module
- **Clean Energy potential** assessments
- SEP Toolkit
- SIP Guidance for EE/RE Actions
- Access to Economic Models
- **Co-Benefits Risk Assessment** (COBRA)
- Mitigation Impact Screening Tool (MIST)

State-to-State Peer Exchange

- **EE/RE State Technical Forums**
- Conferences and training sessions
- Reports and white-papers

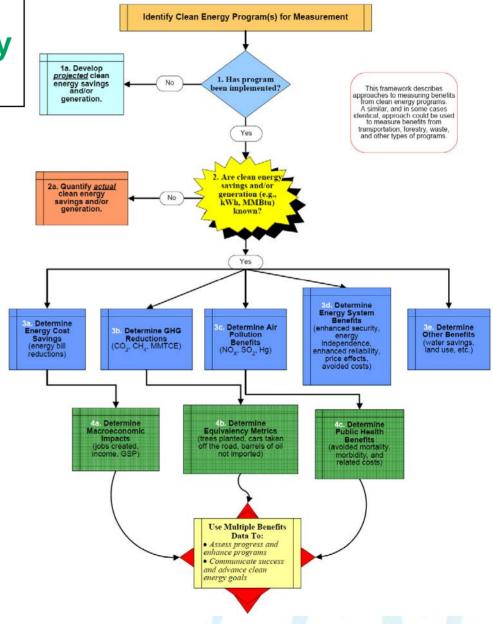
Blue = GHG focus

Selecting the Right Tool for the Job – Key Questions for Getting Started with Measurement

- Why is measurement being undertaken?
- Is it in a voluntary or regulatory context?
- Who is the audience and what kinds of information do they need?
- Is the analysis retrospective or prospective?
- What financial and staff resources are available?
- Is a new analysis required or do data exist from another analysis, state, or region?
- What kinds of data and expertise are available?

Answering these questions helps determine what tools & models are appropriate to the policy or program context.

3


Applying the Framework to Measure Clean Energy Benefits

Example Framework for Determining Benefits of Clean Energy Programs

The rest of this presentation gives examples of tools and resources that can be used to 'operationalize' the framework shown here.

Representative analyses with "low" and "high" levels of rigor and complexity are presented.

SEDA

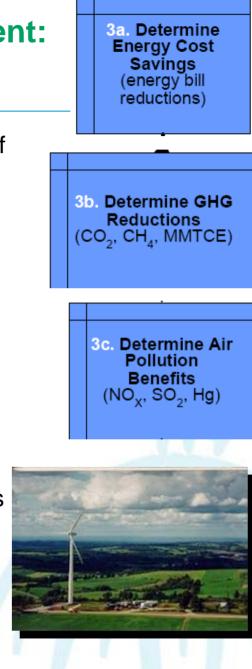
Measuring Benefits Using Low & Medium-Effort Tools

This section shows how these tools can be applied to measure the benefits of clean energy programs:

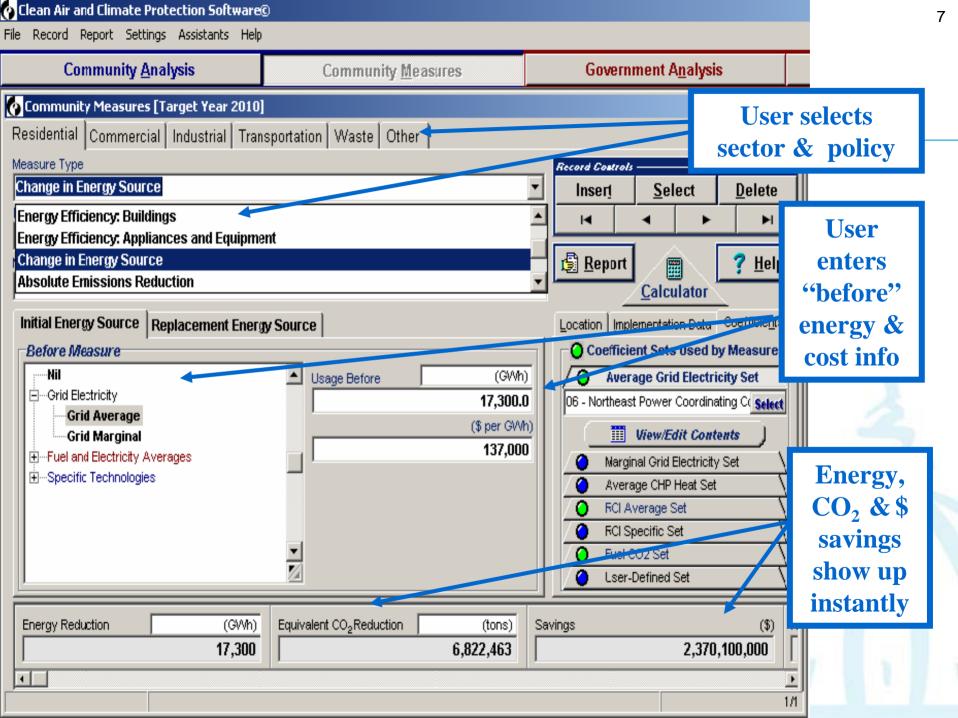
- Clean Air Climate Protection Software
- Co-Benefits Risk Assessment Model
- Equivalency Metrics
- Community Energy Opportunity Finder

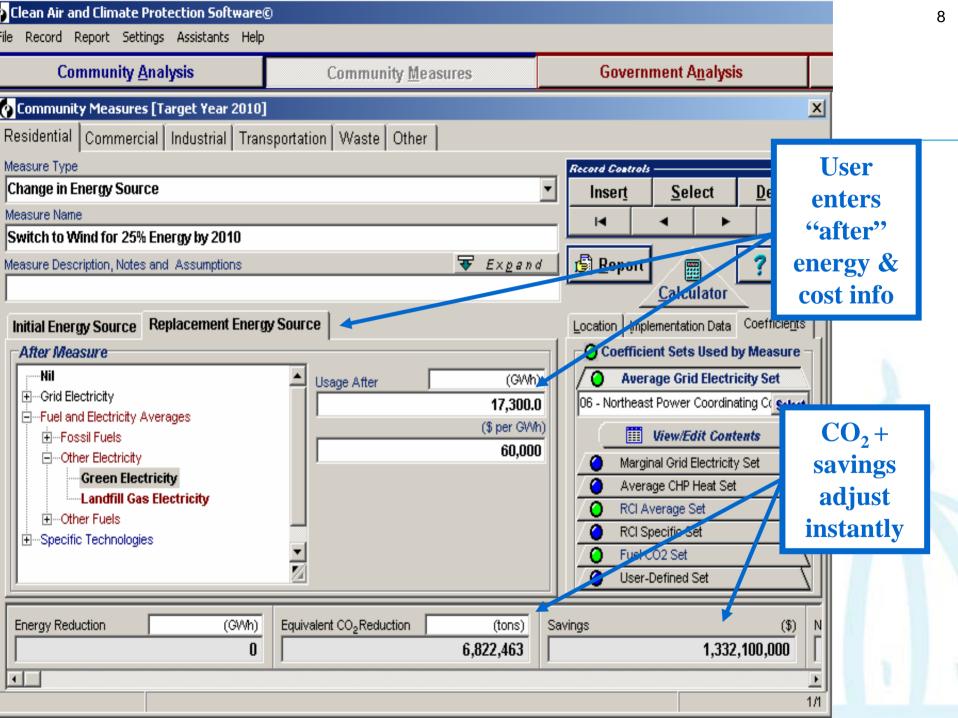
These tools typically:

- Are simplified representations of more detailed research and analysis
- Require minimal data gathering
- Are easy to use (don't require technical/expert assistance)
- Present results in easy-to-understand terms
- Are used to 'make the case' or share results with stakeholders
- Are used in both voluntary and regulatory contexts



Example of Medium-Effort Measurement: Air Emissions & Cost-Savings


- Sample analysis: Estimate the multiple benefits of generating 10% electricity from wind in New York using the <u>Clean Air Climate Protection Software</u> (CACPS)
- Running the model
 - Choose policy measure from list
 - Enter amount of electricity from wind (MWh associated with 10% by 2010 goal)
 - Select emissions factors (regional, state, marginal)
- CACPS calculates GHG, criteria pollutants savings
 - Uses region-specific emission factors
 - Electricity prices specified by user
 - Generate summary graphs, reports



EPA

6

2///2013

New York

Community Greenhouse Gas and Air Pollutant Reductions in 2007 Measures Listing

Re dential Sector

Type of Mes ure : Change in Biergy Source

Location of Measure : New York, New York

ehd .					
		Me a ilure	Detalla		
hittal Ereigy Source			Replacement E	egy Souce	
Electricity			GRes Electrici	v	
Usage Beton		17,300	Urage After		17,300
Ualt		(C001)	Usit		(GMI)
Piloe per Usit		\$.00	Price per Unit		\$11
Ramp-li Factor		100%	S Evergy Reductor (GWN)		0
Year implemented			Emitsion Reduc	tion (tons eCO2)	6,502,84
in plementation Cost		劉	Saulugs (\$4/ea)		\$
			Payback Period	(eas)	
The emission reduction from th	is measure as a parcen	1990 of 212	R realic Bons :		2.2%
NOx Reduction	SOx Reduction	0	O Reduction	VOC Reduction	P III 10 Reduction
(016)	(00#S)		(015)	(b 14)	(016)
8,443	25,987		9,251	1,032	7,676
	Rull	De scriptio	n of Mea Lure		

2/4/2003

New York

Community Criteria Air Pollutants Reductions in 2007 **Measures Detailed Report**

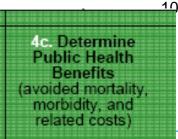
	NOx	SOx	CO	VOC	PM10
	(tons)	(tons)	(tons)	(tons)	(tons)
Residential Sector					
Koday Recycling Project	307	982	337	38	272
wind	8,443	26,987	9,251	1,032	7,475
Energy Star Lights and	2,002	6,396	2,193	245	1,772
New York Energy Smart	956	1,585	652	84	448
New York State Energy	263,494	10,470	65,217	13,896	7,825
Statewide Cumulative	27,942	89,316	30,616	3,415	24,740
Subtotal Residential	303,144	135,738	108,267	18,709	42,532
All Measures	303,144	135,738	108,267	18,709	42,532

Page 1

2/4/2003

Page 1

New York

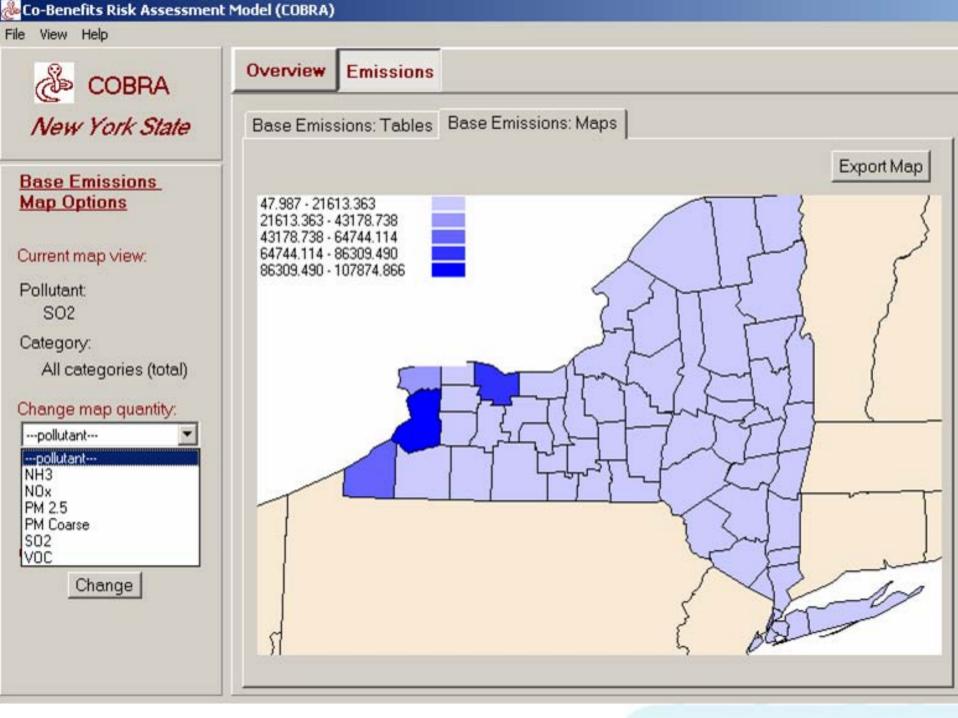

Community Greenhouse Gas Emissions Reductions in 2007 Measures Detailed Report

	Equiv CO2	Equiv CO ₂	Energy	Energy Cost
	(tons)	(%)	(G₩h)	Savings (\$)
Residential Sector				
New York, New York				
Change in Energy Source				
Koday Recycling Project	236,612	0.1	629	86,238,322
wind	6,502,843	2.2	0	0
Energy Efficiency: Appliances and	Equipment			
Energy Star Lights and	1,541,724	0.5	4,102	561,914,063
New York Energy Smart	849,217	0.3	2,558	0
Energy Efficiency: Buildings				
New York State Energy	266,983,633	89.7	879,276	37,812,000
Statewide Cumulative	21,521,780	7.2	57,256	7,844,072,000
Subtotal Residential	297,635,808	100.0	943,821	8,530,036,385
Other Sector				
New York, New York				
Absolute Emissions Reduction				
	16,000	0.0		
Subtotal Other	16,000	0.0		
Total	297,651,808	100.0	943,821	8,530,036,385

CACPS model provides results reports for individual & combos of measures

Page 1

Example of Low-Effort Measurement: Health Impacts



- Sample analysis: Estimate the human health benefits of a 10% reduction in criteria air pollutants using the <u>Co-Benefits Risk</u> <u>Assessment</u> (COBRA) model
- COBRA...
 - Estimates PM changes from air pollution reductions
 - Translates PM into health impacts, economic values
 - Visually maps benefits by county for state, region, U.S.
- Developed for EPA under contract with Abt Associates
 - Other Key Players = OAQPS, state officials
 - Formal technical peer review (Fall 2004)
- Is COBRA the right tool to evaluate human health?
 > Rigor (BenMAP) vs. ease of use (COBRA)

EPA

🕹 COBRA	Overview	Emissions
lew York State		
cenario Options		Welcome to the New York State Co-Benefits
		Risk Assessment Model (COBRA)
a new scenario: tatewide		
or individual counties:	То	begin using COBRA, you may:
Ibany Ilegany	1) Explore the baseline emissions data.
roome attaraugus ayuga hautauqua hemung		This data can be accessed in table and map form by clicking or "Emissions" button above. Viewing the baseline data first can h you decide what changes you want to make in your own scenari
Chenango 🗾	2) Create your own scenario.
Start		You can create a new scenario through the options on the left pa of this page.

COBRA Overview E	missions			
v York State				
ine scenario				
New York State				
0	1.1			
Fuel Comb. Elec. Utility	_	Edit this categ	ory's emissions:	
		PM Coarse:	• reduce by 10	percent
Fuel Comb. Elec. Utility Coal	-	1 10 000138.	C increase by 110	C tons
ter Gas		PM 2.5:	 reduce by ∩ increase by 	C tons
		SO2:	reduce by C increase by 26987	C percent tons
Chemical & Allied Product Mfg Definition of the second s		NOr		percent
Petroleum & Related Industries		NOx:	reduce by 10 increase by	C tons
Other Industrial Processes Solvent Utilization		NH3:		• percent
			reduce by 10 increase by	C tons
 Waste Disposal & Recycling Highway Vehicles 		VOC:	 reduce by increase by 	C tons
E- Light-Duty Gas Vehicles & Motorcycles		-	 Increase by 	s tons
⊕ Light-Duty Gas Trucks			Apply Edits	

<-- Back

Summarize Edits

Run Scenario -->

File View Help

💩 COBRA

Overview Emissions Scenario 1 Scenario 2

New York State

Scenario Emissions: Tables Air Quality: Tables Health Effects: Tables Results: Maps

Export Table

County	Sta ⊽	Mort	Chron	Resp	CV_hosp	UpperR	Lower	Asthma
Albany	NY	.348	.3	.193	.208	8.934	6.943	9.29
Allegany	NY	.078	.047	.035	.034	1.653	1.702	1.5
Bronx	NY	.899	.566	.366	.322	26.86	27.912	20.2
Broome	NY	.348	.256	.182	.201	7.679	6.353	7.73
Cattaraugus	NY	.145	.085	.06	.06	2.894	2.984	2.63
Cayuga	NY	.101	.086	.053	.057	2.755	2.132	2.58
Chautauqua	NY	.362	.248	.176	.188	7.924	7.014	7.62
Chemung	NY	.077	.047	.033	.034	1.447	1.495	1.40
Chenango	NY	.067	.041	.028	.028	1.367	1.411	1.21
Clinton	NY	.056	.061	.035	.037	1.937	1.334	1.91
Columbia	NY	.09	.072	.047	.052	2.151	1.665	2.04
Cortland	NY	.055	.035	.023	.022	1.128	1.167	1.14
Delaware	NY	.073	.04	.031	.033	1.108	1.142	1.13
Dutalian	6152			105	107	2.000	7 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C 71
		21.78	18.24	11.57	11.90	600.84	518.25	565.9
•								Þ

Note: All values represent the change in the number of annual cases of the health effect. Data represent estimates for 2007.

Current table:

Health Effects Table Options

Scenario Name: Switch to 10% Wind

View: New York

View new table by:

choose state	•
choose state	•
All States	
Alabama	
Arizona	
Arkansas	
California	
Colorado	
Connecticut	-

Example of Medium-Effort Measurement: Equivalency Metrics

4b. Determine Equivalency Metrics (trees planted, cars taken off the road, barrels of oil not imported)

Click Here for Calculations and References

15

Greenhouse Gas Equivalencies Calculator

14.393.568

Barrels of oil

The Greenhouse Gas Equivalencies Calculator is designed to enable public and private sector organizations and individuals to quickly and easily translate greenhouse gas (GHG) reductions from units that are typically used to report reductions (e.g., metric tons of carbon dioxide equivalent) into terms that are easier to conceptualize (e.g., equivalent number of cars not driven for one year). Applications of this calculator might include developing a greenhouse gas reduction strategy, communicating reduction targets to the public or stakeholders, and supporting other initiatives aimed at reducing GHG emissions.

If you have already estimated the quantity of emission reductions (e.g., metric tons of carbon dioxide equivalent), please go directly to the table below. If the starting point for your conversion calculation is (a) gallons of gasoline, (b) kilowatt-hours of electricity, or (c) number of cars and light trucks (rather than quantity of greenhouse gas), please click here.

Enter the estimates of greenhouse gas emissions that you wish to convert, by individual gas or carbon equivalent.				Gas	
	6,822,463	То	ns 💌	CO2	1
		To	ns 💌	CH4	
		То	ns 💌	N2O	Calculate
		To	ns 💌	HFC-23	
_	nhouse gas reduction is 6,822,463 Tons 💽 of Carbon Dio				
This is equivale	nt to one of the following:				
1,339,661	Passenger cars not driven for one year		Click He	re for Calculations ar	d References
1,107,198 Passenger cars and light trucks not driven for one year			Click He	re for Calculations ar	d References
704,924,151	704,924,151 Gallons of gasoline			re for Calculations ar	d References

Example of Medium-Effort Measurement: Economic Benefits

4a. Determine Macroeconomic Impacts (jobs created, income, GSP)

Sample analysis: Estimate the jobs benefits of a hypothetical energy efficiency scenario for Stamford, CT using RMI's <u>Community</u> <u>Energy Opportunity Finder</u>

- Helps communities estimate the benefits of investing in EE technologies
 - Free, web-based tool at: <u>http://www.energyfinder.org</u>
 - Benefits estimated: energy, cost, emissions, jobs impacts
 - Links directly to sources of information for the user

	H. Joł	os Creation	Instructions / Explanation
0. Residential			Suggested Payback Entry: LOW: <2 years
	Annual Do	ollar Savings	MEDIUM: 2-5 years HIGH: ≻5 years
	100% Participation <u>What's this?</u>	User Defined Participation <u>What's this?</u>	
Low	\$4,364,657	\$1,309,397	
	\$7,542,552	\$2,262,766	

Total Jobs Created, Year 5					
	100% Participation	User Defined Participation			
Low	58.1	17.4			
High	100.5	30.1			

Total Jobs Created, Year 1					
	100% Participation	User Defined Participation			
Low	9.9	3.0			
High	17.2	5.2			

Benefits Measurement Using High-Effort Tools

This section shows how the following tools can be applied to measure the benefits of clean energy programs:

- eGRID
- Capacity Factor-Based Displaced Emissions Method Using eGRID
- Environmental Benefits Mapping and Analysis Program (BenMAP)
- Regional Economic Models, Inc. Policy Insight

These tools typically:

17

- Are considered more "rigorous" and data-intensive
- Require data gathering
- Require at least some expert/con-tractor assistance
- Offer results that may need to be simplified (depending on the audience)
- Are used to evaluate large programs
- May be used to support regulatory decisions

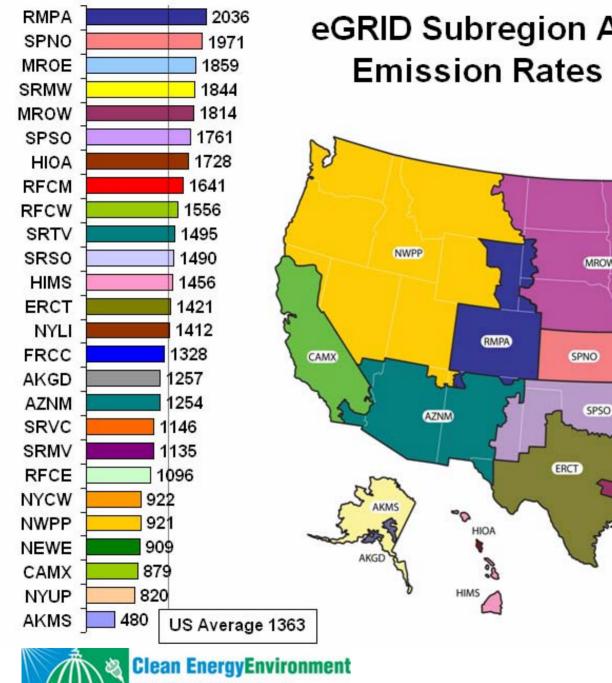
 A comprehensive source of data on the environmental characteristics of U.S. power generation at various level of aggregation

http://www.epa.gov/cleanenergy/egrid

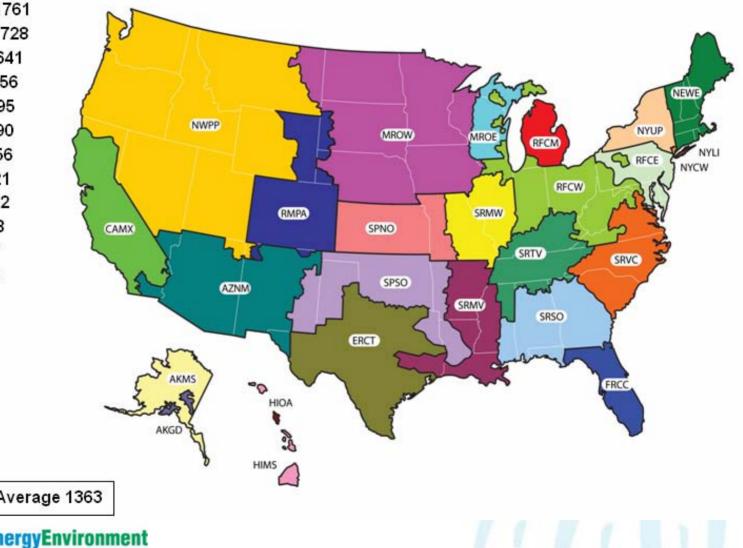
- Database of emissions (CO₂, NO_X, SO₂, Hg), fuel use, and generation from virtually all U.S. power plants
- > 1996-2000 & 2004 data (2005 data in progress)
- Who uses it?
 - CPPD, SLB, Other Fed agencies, States, Companies,, Universities, NGOs, etc.

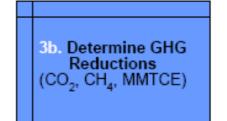
EPA Links electricity generation, air emissions and resource mix
Clean EnergyEnvironment

Levels of Data

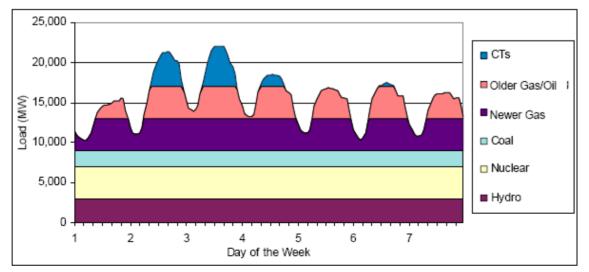


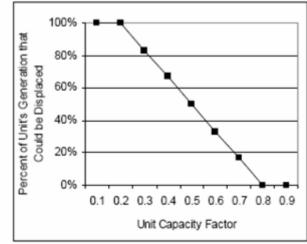
- Basic Data
 - Boiler level
 - Unadjusted emissions and boiler characteristics
 - Generator level
 - Net generation and generator characteristics
 - Plant level
 - Emissions, generation, plant characteristics
 - Starting point for aggregated data


- Aggregation Levels
 - State
 - Electric Generating Company (EGC)
 - Location (operator)based
 - Owner-based
 - Parent Company
 - Location (operator)based
 - Owner-based
 - Power Control Area (PCA)
 - > eGRID Subregions
 - NERC Regions
 - ➤ U.S.

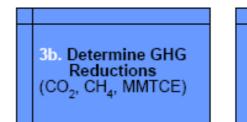


eGRID Subregion Annual CO2 Output Emission Rates (Ib/MWh) (2004)


Example of High-Effort Measurement: Air Emissions

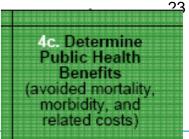

3c. Determine Air Pollution Benefits (NO_X, SO₂, Hg)

- Sample analysis: Estimating displaced emissions using <u>eGRID</u> data and a "<u>capacity factor method</u>" in Montgomery County, MD
 - Simplified approach that uses publicly available data to estimate the air emissions benefits of a new wind plant to meet power demand in PJM West (mostly coal-fired)
 - The capacity factor method takes the total energy generated or saved by the new resource and allocates it to the plants in the region based on each unit's capacity factor.


Figure 1. Unit Dispatch in a Simplified Power System

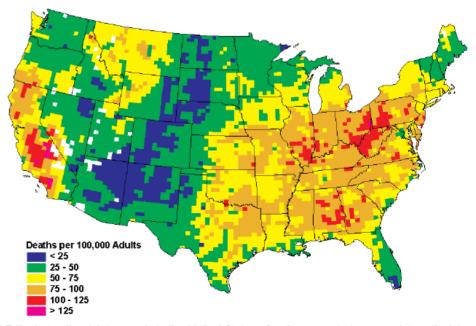
Example of High-Effort Measurement: Air Emissions (con't)

3c. Determine Air Pollution Benefits (NO_X, SO₂, Hg)


- **Clean energy measure:** Montgomery County, MD agency wind power purchase
 - > 5% of electricity use = 32.8 million kWh/year
 - Plus other jurisdictions = 38.4 million kWh/year
- Analytic approach is consistent with EPA guidance document:
 - "Guidance on State Implementation Plan (SIP) Credits for Emission Reductions from Electric-sector EE and RE Measures" (August, 2004)
- Results: 0.05 tons NOx per day
 - 50% of estimated emission reductions (of 5.72 lb NOx per MWh) sought for SIP credit
 - > Cap and trade area, commitment to retire allowances
 - > EPA Region III issued final approval (See May 12, 2005, 70 FR 24987)

Control Measure	Cost (ton/year)
Wind Energy	\$32,000
CNG Refueling Stations	\$54,701
55 CNG Buses	\$103,063
1967 Bike Lockers	\$247,111

Example of High-Effort Measurement: Health Impacts



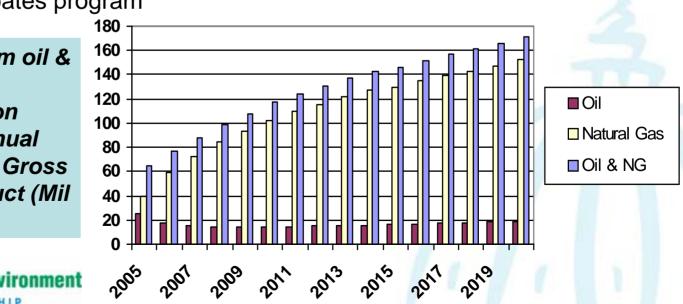
- **Sample analysis:** Estimating health impacts using <u>BenMAP</u>
- BenMAP is the Environmental Benefits Mapping and Analysis Program
 - Developed by Abt Associates with funding from the EPA
 - Peer-reviewed software tool that estimates the health impacts and associated economic values connected with changes in ambient air pollution.
- BenMAP can be used to:
 - Compare benefits across regulatory options
 - Estimate health impacts and costs of existing air pollution levels
 - Estimate health benefits of alternative ambient air quality standards
 - Perform sensitivity analyses of health or valuation functions

SEPA

BenMAP illustrates the risk to people in the United States of anthropogenic (man-made) particulate matter less than 2.5 microns in diameter.

Example of High-Effort Measurement: Economic Impacts

4a. Determine Macroeconomic Impacts (jobs created, income, GSP)


າ1

- Sample analysis: Estimating the economic impact of oil and natural gas conservation policies using Regional Economic Models, Inc. (REMI) <u>Policy Insight</u>
- CT has used REMI to evaluate:
 - Oil and natural gas conservation policies
 - EE measures of the Connecticut Energy Conservation & Management Board (ECMB) Fund
 - Feebates program

Results from oil & natural gas conservation policy. Annual increase in Gross State Product (Mil 96 \$)

Clean Energy

SEPA

For More Information

Tools and resources for state and local governments

See: www.epa.gov/cleanrgy/stateandlocal/resources.htm

- Select Links:
 - CACPS: http://www.cacpsoftware.org/
 - COBRA: contact Denise Mulholland (EPA), 202-343-9274
 - Community Energy Opportunity Finder: http://www.energyfinder.org/
 - REMI: <u>www.remi.com</u>
 - BenMAP: http://www.epa.gov/ttn/ecas/benmapdownload.html
- Contact: <u>Dietsch.nikolaas@epa.gov</u> 202-343-9299

