
The Application of Survival Analysis to
Demand-Side Management Evaluation

Robert D. Bordner and Mark Siegal, Synergic Resources Corporation
Lisa A. Skumatz, Skumatz Economic Research Associates

The estimated useful lifetime of energy conservation measures (ECMs) is a critical input to Demand-side
Management (DSM) program cost-effectiveness calculations. Accurate assumptions regarding measure persistence,
therefore, are essential in the integrated resource planning (IRP) framework. This paper discusses the theoretical
basis of survival analysis techniques as well as the practical application of these techniques to the issue of measure
retention in DSM. Based upon the authors’ experiences, this quantitative technique offers utility planners numerous
advantages in the estimation of measure lives and the analysis of measure removal. This paper summarizes the
mathematical foundation for this statistical technique which is widely used in the field of demography but is only
recently being applied to the field of DSM. The remainder of this paper includes a case study review of the
application of this technique, drawing upon projects with which the authors are familiar. In addition to a synthesis
of results from these analyses, the paper explores researchers’ experiences using this technique, including issues
relating to data availability and quality, and limitations encountered in applying this technique to DSM.

Introduction

At a most fundamental level, impact evaluation seeks to
answer two basic questions, including (1) what level of
impact may be attributable to a program, and (2) for how
long will these impacts (efficiency gains) persist? Each of
these basic questions presents unique measurement chal-
lenges. Moreover, while the challenges encountered in
measuring the impact a program has today are significant,
attempting to measure the persistence of these impacts into
the future is the subject of even greater uncertainty. And,
as other evaluators have noted, previous efforts to quan-
tify the impacts of DSM programs have focused in large
part upon first-year savings impacts (Jeppesen and
Rudman 1993). Aside from the obvious resource planning
implications, the persistence of DSM measures also plays
a key role in the customer service attributes of DSM.
Measures which do not address customers’ energy service
needs, and are therefore removed prior to failure, reflect
poorly on utility DSM programs and highlight the down-
side of guiding the technology choice of consumers. As a
reflection of the importance of persistence, there has been
a substantial increase in attention to this topic during the
past two years.

This paper discusses the potential for using survival analy-
sis techniques as a means for evaluating the persistence of
DSM program impacts. In doing so, we discuss the

methodology behind this approach as well as data needs
and limitations. Three case study examples are provided in
which survival models were used (or attempted) to analyze
persistence and quantify effective measure lives. Finally,
we assess the long-term potential for the application of
this technique within the DSM program evaluation
context.

Persistence: A Framework

The term persistence refers to the sustainability of DSM
program impacts (typically, but not limited to, efficiency
gains) over time. Conceptually, persistence of savings
may be segmented into the following three components:

Technical Degradation. This term refers to a degra-
dation, over time, in the level of technical savings
achieved through the installation of a particular DSM
measure or a change in customer behavior. In measuring
these changes, it is important to identify only that
degradation which is incremental to the degradation which
would have been encountered with the base-case equip-
ment. Researchers have noted, for example, that the effi-
ciency levels of energy efficient refrigerators degrade over
time. However, the crucial question is whether or not the
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magnitude of such degradation is above and beyond that of
a standard efficient refrigerator.

Market Progression. This term refers to the change in
baseline equipment efficiencies present in the marketplace.
While some DSM planning models take into account
changes in the baseline efficiency over the time of the
planning horizon, this factor is often overlooked. This
issue will become a central focus in the evaluation of
market transformation programs.

Effective Measure Life. The third element of persist-
ence, effective measure life, results from the combined
effect of (1) technical failure, and (2) the retention of
measures (or program-induced energy use patterns). In
program planning, this key variable in the Benefit-cost
analysis equation is typically based upon engineering
estimates and/or perceived in-field operating experience
(McRae et al. 1987) and may not reflect actual in-field use
or retention patterns. When considering effective measure
life, it is important to distinguish between the longevity of
the actual measures and the longevity of behavioral
changes (and, combinations of these two). Energy Man-
agement Systems (EMS), for example, include both a
technical component—the electronic control system, and a
human component–the programming, operation, and
maintenance of the system. Renovation and remodeling
have been shown to also have a significant role in the
effective measure life (Skumatz and Hickman 1992).

Survival analysis is useful in understanding the third
component of persistence identified above—effective
measure life.

What Is Survival Analysis?

Survival analysis techniques have their origin in the fields
of demography and biostatistics, where survival models
are used to quantify life expectancy within human and
other biological populations. In addition to providing
insight into life expectancy ranges, survival models also
aid in understanding the causes of mortality within these
populations.

Analytical Techniques

The techniques in survival analysis are different from
conventional statistical methods, either parametric or non-
parametric, because some survival times from some sur-
vival data may not be known. This occurs when some
subjects in the study are still “alive” at the time data are
collected. Thus, the exact survival times for these subjects
are unknown. These are called censored observations. If a
measure is still in place at the time of data collection, the

ultimate removal date is unknown, and thus it is treated as
a censored observation. The survival analysis techniques
applied to DSM, therefore, take into account the fact that
not all measures have failed when data were collected,

The life table method is one type of statistical model that
contains several related mortality measures. One of the
main advantages of the life table method over other
methods of measuring failure rate (mortality) is that this
approach does not reflect the effects of the age distribution
so that failure rate comparisons among different measures
can be made. An observation in the data set can have a
different date of installation and/or removal from others.
Another main advantage of using life tables is that the
statistics provided in life tables can be used for
forecasting.

There are two types of life tables: a longitudinal life table
and a period life table. The period life table is capable of
including multiple years of data in one life table and
generating meaningful statistical estimations from these
observations even though the data are from different
cohorts. The period life table is a mathematical model of
the life history of a hypothetical cohort. The key assump-
tion underlying a period life table is that the hazard
function (age-specific failure experiences) during the
current time represents the failure experience of the whole
cohort. That is, we assume the failure rate of one type of
measure installed five years ago to be the same as the
failure rate for a measure installed four years ago. This
assumption may need to be altered, of course, if one has
reason to believe that the character of installations has
changed over time.

The following statistical estimates are generated in the life
table analysis and are used to assess measure retention:

Survivorship Function. This function, denoted by
S(t), is defined as the probability that a measure lasts
longer than t: S(t) = P (a measure lasts longer than t). In
practice, the survivorship function is estimated as the
proportion of measures functioning longer than t:

S(t) = No. of measures functioning longer than t
Total number of measures

S(t) is also known as the cumulative survival rate.

Probability Density Function. Like any other
continuous random variable, the survival time T has a
probability density function defined as the limit of the
probability that a measure fails in the short interval t to

failure in a small interval per unit time. It can be
expressed as
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In practice, the probability density function f(t) is
estimated as the proportion of measures failing in an
interval per unit width:

f(t) = No. of measures failing in
the interval beginning at time t

(Total number of measures) (Interval width)

The probability density function is also known as the
unconditional failure rate.

Hazard Function. The hazard function h(t) of survival
time T gives the conditional failure rate. This is defined as
the probability of failure during a very small time interval,
assuming that the measure has functioned to the beginning
of the interval, or as the limit of the probability that a

that the measure has functioned to time t.

The hazard function can also be
survivorship function S(t) and
function f(t):

h(t) = f(t)
S(t)

defined in terms of the
the probability density

In practice, the hazard function is estimated as the
proportion of measures failing in an interval per unit time,
given that they have functioned in the beginning of the
interval:

h(t) = No. of measures failing in
the interval beginning at time t

(Total number of measures) (Interval width)

The hazard function is also known as the instantaneous
failure rate or conditional failure rate.

Effective Sample Size. The effective sample size n’(t)
has the following definition:

n’(t) = n(t) - w(t)
2

where n(t) is the sample size and w(t) is censored observa-
tions. The effective sample size is the key concept in life

table survival analysis. It is the effective sample size that
makes adjustment for censored data.

Conditional Probability of Failure. The conditional
probability of failure q(t) is defined as total number of
failures in each age interval divided by the effective
sample size:

q(t) = d(t)
n’(t)

where d(t) is the total numbers of failure in each age
interval.

Lifetable Results

In applying survival analysis techniques, a series of life
tables is constructed for each of the measures included in
the study. From these life tables, we are able to examine
patterns in measure retention in greater detail than is
possible through more simplistic univariate analysis tech-
niques. Table 1, below, summarizes the major statistical
estimations from the life tables. Specifically, the following
are shown: (1) Probability of Survival, and (2) Mortality
Patterns.
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Probability of Survival. Using the survivorship func-
tion generated in the life tables, it is possible to estimate
the probability that, at any given time following installa-
tion, the measure will still be in place. This probability is
also referred to as the “Survival Function Estimates. ”
Effective measure life is usually estimated to be that point
in time at which the probability of survival is equal to
50%. In Table 1, this occurs at approximately year 12 fol-
lowing installation.

Mortality Patterns. Using the lifetable statistic called
the Hazard function, it is possible to identify trends in
measure failure over the life of a measure. In other
words, at what time during the life of a measure is failure
most likely to occur? Mortality patterns have been
explored for each of these measures using instantaneous
failure rates for each age interval, as represented by the
hazard function. The value of the hazard function for each
year can also be compared with more traditional engineer-
ing estimations.

Data Requirements and Issues

The data required for survival analysis are, conceptually,
relatively straight forward. At the most basic level, we
need to know the following information pertaining to the
original installation:

what measure was installed,
when the measure was installed,
where the measure was installed.

This information is then matched, on a measure-by-
measure basis, to ascertain whether or not the measure is
still in place. If the measure is still in place, we need to
know (1) is the observed measure the original installation,
and (2) is the measure continuing to function properly and
as intended? If the measure is not in place, we need to
know (1) the approximate date of removal, and (2) the
reason for removal. Other information which, although
not strictly needed for the survival analysis, is useful in
evaluating the appropriateness of program expenditures,
include:

what is the condition of the observed measure?

if the measure has been replaced, what has replaced
it? Is the replacement measure more efficient or less
efficient than the program-installed measure? Was the
replacement measure installed through a utility-
sponsored program?

if the measure has been replaced, what is the disposi-
tion of the replaced equipment (e.g., is it still operat-
ing, but in another location)?

These follow-up questions can help a utility assess
whether it should continue to account for savings because
the measure is still being used in another location, but
recognize the fact that different operating hours/conditions
may exist.

Data Collection Issues and Challenges

While simple in concept, the collection of reliable data is
not a trivial matter. Numerous challenges have been
encountered thus far, as discussed below.

Conflicts Between Database Records and
Customer-Supplied Information. Example: The pro-
gram database indicates a CFL installation, but the
customer insists that the measure was never installed. Or,
conversely, although there is no record of a low flow
showerhead being installed in the home visited, the
customer insists that one was installed through the
program.

In such cases, we have generally used the database of
record as a relatively strict reference point. In some
persistence work, however, evaluators have attempted to
account for all variations, both “positive” and “negative”
variances. In studying long-term measure retention, it is
imperative that issues pertaining to persistence be
distinguished from those of overall data quality. The latter
should be examined early in the program implementation
through process evaluations in order to ensure the
fundamental integrity of the database which is being used
for measure retention purposes.

Which Measure Is Which. Example: Two lamps are
reported installed, one in the kitchen, another in the living
room. One lamp is observed in the basement. Or, 200
energy efficient lighting fixtures are reported installed in a
200,000 SF building. 125 energy efficient fixtures are
located, only half of which are the type noted in the
program records.

While manageable in the residential setting, this type of
problem becomes unmanageable quite quickly when
dealing with large commercial installations. Indeed,
without program records indicating where measures were
installed, it may be virtually impossible to ascertain with
certainty the true disposition of the installation. In this
case, survival analysis is not going to be possible, and
evaluators can only report results at an aggregate level
(e.g., 83% of lamps installed were accounted for).

Measure Has Been Removed, but the Date Is
Unknown. While the optimal situation from an analysis
perspective would include a date for removal, this is not a
realistic expectation in many cases. For residential
participants, removal dates may be known, particularly if
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the date coincides with a memorable event in the house-
hold. And, in some cases, such an event may be directly
related to the reason for removal as well, such as
“remodeling of the bath.” In the commercial and industrial
settings, this again becomes problematic because, unless
detailed records are kept (and accessible for evaluation
purposes), such information is often in the memory of one
individual who may or may not be available to interview.

When Has a Measure Truly Failed. Example: Two tank
wraps are observed, On one tank, the sealing tape on the
top third of the tank wrap has come undone? On the other
tank, the top half is undone? Which measure has “failed?”

For some measures, it may be difficult to ascertain exactly
when a measure has in fact “failed.” In addition, for long-
lived measures, it may be useful to distinguish between
strict failure and partial failure. While always subjective,
it is important in these cases to establish consistent
yardsticks by which a measure will be determined to have
failed or been removed.

Accounting for “Re-purchase. Example: A grocery has
been remodeled, but the energy efficient refrigeration
equipment has been replaced with newer state-of-the-art
energy efficient equipment. Or, in a residential bathroom,
CFLs installed through the program are removed but there
is a newer CFL installed in its place.

For utilities which are able to take credit for customer re-
purchase (i.e., replacement of failed energy efficient
equipment with similar high efficiency equipment), it may
be important to not treat these observations as failures.
However, from an analytic perspective, treating these as
“survivors” may distort the true “effective measure life”
estimate.

Case Studies

Summarized below are the results from three persistence
studies completed by the authors, in which survival
analysis techniques have been applied. In each case,
survival analysis has been used to develop effective
measure life estimates. The results of these applications
suggest significant lessons learned for program evaluators.

Case Study #1: Northeast Utilities Wrap-
Up/Seal-Up Measure Retention Study

For Northeast Utilities (NU), SRC conducted a compre-
hensive measure retention study of participants in the
utility’s Wrap-up/Seal-up (WU/SU) program (SRC 1993).
The WU/SU program installed hot water conservation
measures in over 60,000 homes during the period 1981 -

1989. The scope of this study included 600 on-site visits
to residences that had been treated through the program.

In this study, the effective measure lives for DHW tank
wraps and low flow showerheads were found to be sub-
stantially longer than originally planned (Bordner et al.
1993). A summary of the statistically derived measure life
estimates from this study are summarized in Table 2.

The removal of hot water wraps was found to occur most
often at the time of water heater failure. This study also
found that, as had been observed in the commercial
sector, renovation or remodeling is cited as the cause of
removal for measures—in this case low flow showerheads.
Figures 1 and 2 illustrate the survival and hazard curves
for each of the measures observed in the study.

Case Study #2: Long Island Lighting Low
Income Program Evaluation

As part of a process evaluation for Long Island Lighting
Company (LILCO), SRC conducted on-site visits with 45
participants in a low income program (SRC 1994). Sur-
vival analysis was used to assess the measure life of
compact fluorescent lamp installations. The mean lifetime
interval estimate for CFLs, at a 95% confidence level,
was estimated to be 4.9 years to 8.3 years, with a point
estimate of 6.2 years.

However, in this analysis the program had only been in
the field for 12 months and the number of failures was
limited. Based upon the data which were available,
forecasting techniques were used to calculate an effective
measure life for CFLs. Using forecasting techniques to
calculate an effective measure life for CFLs requires that
the analyst assume that the remaining CFLs will experi-
ence the same physical and social/economic conditions in
the next several years as were experienced in the first
year. This assumption introduces additional risk because
short term data is used to make long-term assessments.

A summary of the lifetable generated in this study is
provided in Table 3.

Case Study #3: Bonneville Power
Administration Measure Life Study II

The Bonneville Power Administration has conducted
research on measure lifetimes since at least 1987, and has
sponsored two recent studies specifically addressing issues
related to effective measure lifetimes in the commercial
sector. In the most recent study, data from over 600 site
visits with commercial customers were used by evaluators
in quantifying measure lives for specific equipment types.
This study focused on three business types—grocery,
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Figure 1. Survival Function Estimates: Hot Water Efficiency Measures

office, and retail because of (1) significant program
expenditures in these building types, (2) a large number of
buildings, and (3) indications of possible volatility from
earlier measure life studies. Survival analysis was
employed as one means of quantifying the observed
measure lives.

In the BPA study, site visits were completed with build-
ings drawn from three sources which had been visited
previously within the last 2-5 years, including (1) par-
ticipants in the BPA Commercial Incentives Pilot Pro-
gram, (2) participants in the BPA Commercial Audit
program, and (3) a sample of participants from the Pacific
Northwest Non-residential Survey. This last source, a
representative survey of non-residential buildings through-
out the region, provided a database that could be used to
derive generalizable estimates what were more statistically

representative of building changes and measure lifetimes.
The use of the CIPP database increased the number of
“progra.m installed” measures included in the sample.
During site visits conducted by experienced energy
auditors, it proved to be extremely difficult to match
original equipment records (from survey or program
participation records) with equipment observed on-site.
Matches were few, either in terms of equipment type or
counts. Table 4 shows the extent to which exact equip-
ment matches were observed, controlling for an exact
count match, and allowing for differences in counts.

Since a strict application of survival analysis requires a
matching of records, any non-matches would generally be
interpreted as removals. However, using this assumption
would result in measure lifetime estimates that were
unreasonably short and not credible. Further, it requires
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Figure 2. Hazard Function Estimates: Hot Water Efficiency Measures

ignoring a number of factors related to data collection for upon measure installations as opposed to audits of
the study: equipment;

● the original program records were not designed to ● the measure were not followed up between installation
support measure life analysis, and did not maintain and revisit, a period of between 2-5 years (with result-
consistently detailed information on measure, types, ing loss of information regarding dates, disposition,
and dates. Further, specific DSM measures were few failures, and identification); and
in number since only one of the databases was based
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● none of the specific measures installed were tagged in
any way to facilitate identification of specific
measures.

The non-matches could not reasonably be assumed to
represent failures alone, but could easily be interpreted to
include the influence of other factors. In summary, very
few matches were possible and the data were not of suffi-
cient quality to rely solely on the survival analysis method
for deriving measure lifetime estimates (Skumatz and
Hickman 1994). Only a limited survival analysis, on a few
lighting measures, was possible; the results from these
analyses showed very wide confidence intervals. Despite
data difficulties, the study did generate estimates of
measure lifetimes using several different analytical
methods.

This experience highlights a key limitation of survival
analysis-data quality and detail. Particularly when dealing
with large numbers of installed measures or measures
installed in large complexes, it may be extremely difficult
to account for all measures installed. On-site time limita-
tions, site accessibility, on-site sub-sampling strategies,
database errors, and other factors may all limit the ability
to match records.

The results demonstrate different levels of reliability and
robustness, depending upon the measures considered, the
analysis used, and the data available. It was found that,
absent sufficient data on failures to support survival
analyses, other methods can be applied to estimate meas-

ure lifetimes for equipment that has reached steady-state
replacement rates. However, these techniques fail when
examining new, cutting-edge technologies-the very types
of equipment likely to be encouraged through utility-
sponsored DSM. The advantages of survival analysis tech-
niques are especially useful in these applications but
require good recordkeeping. Routine follow-up for a
sample of measure installations may be one of the best,
and most cost-effective, means of obtaining estimates for
commercial measures.

Implications: Opportunities and
Limitations

With survival analysis, program evaluators have available
a powerful analytical methodology for assessing the effec-
tive measure life of ECMs. Moreover, with this tech-
nique, relative impacts of various causes of failure can
also be quantified. However, as discussed below, the
ultimate applicability may vary from sector to sector and
may depend upon the types of measures addressed.

Residential Sector

DSM programs targeting the residential sector may lend
themselves most easily to the data requirements of sur-
vival analysis. In this sector, evaluators are typically
working with single-measure installations. ECMs such as
(1) hot water wraps, (2) low flow shower heads, (3)
energy efficient refrigerators, (4) energy efficient freezers,
and (5) attic insulation are relatively easy to identify.
Also, use patterns are likely to be fairly homogeneous
(within housing types) across large populations. Resi-
dential evaluation may not be as easy, however, for low
cost weatherization measures such as caulking and other
air-sealing steps.

Commercial Sector

Depending upon the types of measures installed, and the
variety of facilities retrofit, survival analysis techniques
may not be feasible for programs targeting the commercial
sector. With lighting ECMs, the sheer volume of meas-
ures typically installed will generally preclude the detailed
record-keeping required to match program records with
on-site observations. Analyses may need to be conducted
at a more aggregate level—perhaps the whole facility
level, with judgementally-based assessments of measure
retention. In this case, measure retention (including
potential removal causes such as facility remodel or tenant
turn-over) would have to be analyzed at a whole-facility
level rather than measure-specific level. Or, as a compro-
mise, data could be collected at a facility zone level and
persistence evaluated at a similar level of analysis.
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Industrial Sector

Within the industrial sector, it may be possible to apply
survival analysis techniques. Long measure lives are
typical in this sector, and few failures are likely to be
observed within early years. However, within this sector
in particular, equipment migration (motors, for example)
may come into play and confound efforts to assess effec-
tive measure life.

Advantages of On-going Persistence
Research

For those settings where data quality is likely to hinder the
success of the analysis, it may be worthwhile to conduct
on-going persistence research with a smaller sample of
customers. In contrast with a larger-scale retrospective
study, such an approach would contact a fixed set of
customers on a periodic basis (e.g., annually) in order to
assess persistence. The advantages of this approach
include (1) the ability to identify more precisely the date
at which persistence was affected, (2) the ability to
maintain contact with facility managers familiar with the
measure installation, and (3) the collection of “real-time”
persistence data. Despite the long-term commitment
required in such an undertaking, we believe that this
approach may provide higher quality results for persist-
ence research, in general, and may actually result in long-
term cost savings.

Summary

The application of survival analysis shows promise for
DSM evaluation. The technique is forgiving and flexible
in that it can be applied to measures after relatively short
in-field life. Given appropriate data, it can be appropri-
ately applied to measures with high turnover. The method
can provide reliable estimates and confidence intervals.
However, with its reliance on matched equipment, this
method is data intensive, and may require dedicated
studies or programs willing to do a great deal of additional
monitoring. Absent such data, and the ability to match
installations on a measure-by-measure basis, the reliability
of survival analysis techniques declines markedly.

From a practical standpoint, the method may have little
applicability in lighting programs which have focused on
lamps only, as opposed to whole-fixture replacement
(where much of early DSM expenditures have been spent)
because of the difficulty of monitoring key lighting
equipment. Although theoretically appropriate for meas-
ures with high turnover, it can be difficult to assure
accurate data collection to support reliable quantitative
estimates in the case of much changed-out equipment
(e.g., lamps). In the case of newer equipment, the

measures may or may not have had sufficient field time to
generate enough failures to support derivation of lifetime
estimates from this method, but results on the same data
would generally be better quality than those derived
through other simpler estimation methods.

Other methods, including methods relying on information
on age of equipment; building age with equipment change
information; reported equipment changes; and other
methods have several advantages. They are less data
intensive, and estimates of measure lifetimes may be
derived with data from a single visit in some cases. In
addition, for some methods, estimates can be derived with
a relatively few observations. However, these methods
have several weaknesses and it can be difficult to derive
reliable confidence intervals for the measure life
estimates.

Based on an assessment of the theoretical and practical
aspects of alternative approaches to measure life estima-
tion, it appears that:

for some measures, simpler analysis methods provide
acceptable estimates

for easily identified measures with few installations
per site (e.g., water heaters), it may be possible to
support survival analysis using existing program
records coupled with an on-site or other follow-up

for large, singular, or low sample size items that are
relatively easily identified on-site, it may be best to
pool across programs/utilities to increase the sample
size

for lighting, survival analysis will likely require
changes to programs to mark or identify installed
measures (including floor plan identification) to sup-
port survival analysis

for newer measures, survival analysis is likely to be
necessary in order to derive estimates that reflect
more than market tenure, but it will be necessary to
design needed data into programs

it is likely that survival analysis estimations of a range
of residential and commercial measures can be sup-
ported using a tag system and callbacks rotated with
on-site visits.

Survival analysis provides a high quality, credible estima-
tion method, but given its significant data requirements,
may be impractical for some measures unless the data
collection needs to support estimation of measure lifetimes
are designed into DSM programs. However, given the
large impact that changes in measure lifetimes may have
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on cost-effectiveness calculations, it may be important to
modify upcoming programs to support these types of
efforts until reliable estimates of on-site effective lifetimes
can be generated.
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