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ABSTRACT

The diffusion of energy efficient technologies, or lack thereof, has been the subject of
numerous studies. The Industrial Assessment Center (IAC) program conducts assessments of
plants in small and medium-sized companies and makes energy efficiency recommendations
that will result in cost savings and high rates of return. This study uses a detailed database
from the IAC program to examine the firm's decision to implement a recommendation. This
study estimates two probit models; one captures the probability that a· particular
recommendation is made, and the other the probability that a recommendation is
implemented. The second model, the decision to adopt, is the primary focus of the analysis.
The paper interprets the results from the economic variables in terms of the speed of adoption
(Le., in the context of standard diffusion models). MarlY measures of technology perfoInlance
have a statistically significant influence on the adoption decision.. Higher implementation
cost or energy prices reduce the chance of adoption for many technologies, but not alL This
effect is in addition to the effect these variables have on payback, which also lowers the
~hance of adoption as payback rises.. general, many economic variables influencing the
cost energy savings of the technology have a statistically significant effect on the
decision to adopt, but the size of the effect is rather small. For example, a longer·payback
period lowers the probability of adoption by 2% per year. Other effects suggest resource
constraints or risk aversion. Higher implementation costs lower the probability of adoption.
For every thousand-dollar increase in implementation costs, the probability is lowered by
0.03%..
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The IAC conducts energy assessments2 of plants in small and medium sized
companies and makes energy efficiency recommendations to that result in cost savings and
high rates of return, as measured by simple payback.. Assessments are made by teams
composed of engineering faculty and students from the centers, which are located at 30
universities around the country. The recommendations made in an IAC assessment typically
have a payback of 3 years or less and average $55,000 in potential annual savings to the
company..3 The company then decides whether to implement the recommendations and
reports this decision to the center. Average implementation is nearly 50%.4 Information on
the cost and performance of the specific recommendations and selected data on the company
are maintained by Rutgers in a publicly available database. This study uses this detailed
database from the IAC program.

A study by the DOE (Woodruff et al. 1996) summarizes the IAC program and the
results through 1994 in detail. It reports that 95% of the recommendations implemented by
the participating companies have' had an estimated payback of 2 years or less and have
resulted in $517 million in savings, at a federal program cost of $27 million. Tonn and
Martin (2000) report on the benefits of the IAC program, beyond those embodied in the
assessment itself, on the basis of a follow-up survey of 42 companies. The report concludes
that the program positively influenced the companies' attitudes about energy efficiency
decision making. Other effects of the lAC program were also considered in the follow-up
survey. In .addition to the direct effect of the assessment, questions were asked about the
hiring of IAC "alumni" (i.e., students that fOnilerly worked/studied .at an IAC university
center) and use· of Web-based resources associated with the IAC program. Muller, et aL
(1995) reports on the results of a follow-up survey of 104 companies. The report notes that
28% of the companies implemented additional recommendations beyond those that they
reported on originally. This study does not consider whether the decision process may have
changed following the assessment or for subsequent adoption decisions but instead focuses
on the decision process directly related to the assessment,

The focus of this study is· to examine a fum's decision to implement a
recommendation 0 Specifically, this paper examines which variables in the IAC database
influence a finn's decision to adopt. This study estimates two types of binary variable
models 0 The first captures the probability that a particular recommendation is made, and the
second captures probability that a recommendation is actually implemented. Probit
models are used to represent the choice function. The first model explores sample selection
issues and examines how likely a particular type of energy efficiency option is. The second
model, the decision to adopt, is the primary focus of the analysis.

general, the conclusion is that many economic variables influencing the cost and
energy savings of a technology have a statistically significant effect on the decision to adopt,

the size of each effect is rather small. For example, longer paybackS lowers the
probability of adoption, but by only 2.0o~ per year.. Other effects suggest resource constraints

2 This program has been expanded in include other waste and productivity assessments. This paper considers
only the energy assessment information.
3 Information taken from http://www.oit.doe.gov/iac/ as accessed on October 2, 2000.
4 Information taken from http://oipea-www.rutgers.eduJdocuments/doc_f.html as accessed on October 2, 2000.
5 Simple payback (ie., total cost/annual savings) is used as a measure of technology performance. The database
does not include sufficient information to compute net present value or internal rate of return.
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or risk aversion. Recommendations that have higher implementation cost, but a- similar
payback have a lowered probability of adoption. For every thousand-dollar increase in
implementation costs, the probability is lowered by 0.03%. Larger firms, in the sense of
having more employees, are more likely to adopt. For every 100 employees, the adoption
probability increases 0.5%. A wide range of technology-specific and energy-price-specific
effects are also found.

Industrial Assessment """'iIIx'Jll..Jl8.IIlli.-'iIIx'JIIi.

The lAC program and description of results are described detail in Woodruff et aL
(1996), so are not repeated here. assessment reports are confidential, but data from the
assessment on selected firm data (sales, energy costs, employees, etc.) and on the actual
recommendations (cost, savings, specific technology, etc.) are maintained by Rutgers in tvvo
databases. order to organize the assessment data a useful way, a coding system called

Assessment Recommendation Code has to list each
recommendation; see Muller and Kasten (1998) more -'''''''.-.J!...Ii.U.

The ARC system is a hierarchical classification system, much like the Standard
.Jl..Il.JI._._UlV.I!>..II._.... Classification system ofclassifying products into industry groups. This paper
concerns itself only with energy recommendations and does not distinguish between
detailed a lications, are very analy , ARC codes are
gr 27 tvvo-digit codes* These categories are used to technology-specific
differences in the modeling.

analysis uses data obtained Rutgers that include assessments through 1995.
plant-specific data visits) were merged wi the recommendation
(54,335), resulting in a database is large 0 Sales, implementation, and energy

cost ta were deflated to 1992 dollars using a producer index. Observations with
no or sales were edo were further restricted to those that
used both natural gas electricity as primary energy types. Although this approach was a

it us energy prices the tvvo types of energy that are
industrye this restriction, the database includes 27,144 records.

~UJrrml1ary 1"'i"ll".n"ll"'\Ilt"lT''ll,... n are 1 are available the

Diffusion Models

typical view technology adoption is that of an epidemic model, or S-curve.
are opted slowly at first, then more rapidly as they gain acceptance.

as the maximum feasible market share is reached. The speed of adoption
be influenced by a number of firm and technology characteristics. Harrington et aL

presents an analysis of a finn's decision to adopt various types of energy-efficient
technologies, express in tenns of speed of adoption. Following that report's notation, we

let J(,t be the presence of the technology for plant i at time t Xt be the average level of
adoption at time t The diffusion model can be described by
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P(M;,t =11 X;,t-l =0) =4c· X t_1 • (1)

The constant, c, represents the speed of adoption. Harrington et al. (1999) estimates the speed
of adoption across a range of technologies and industry sectors and concludes that it is
remarkably similar, c = 0.22. We computed the speed of adoption for each of the 27
technology groups in a similar manner. We computed the fraction of cumulative adoptions
since the start of the IAC program in any year, relative to the total number ofplants that have
received that technology recommendation. We see that this speed of adoption varies
substantially across time and technology. In particular, the speed of adoption tends to be
much lower in the late 1980s and early 1990s. This lower speed may be due to the
substantial energy price decline that occurred after 1986~ We return t9 this issue later in the
paper.

Table 10 Summary Statistics of the Variables Used in the Analysis
Variable name Description Mean Std. Dev.
ACCEPT Recommendation adopted = 1 55% 0.50
EMPLOYEE Number of employees 0.18 0.16
SALES Gross annual sales 24.88 31.57
PLANT_AR Plant area 38.30 131.76
PROPHOUR Production hours per year 4.99 2.19
IMPCST92 Implementation cost 8.77 102.37
C_TOT92 Total energy expenditures 0.46 0.66
NG_PRICE Natural gas price 5.11 2.61
E_PRICE Electricity price 20.77 7.41
PAYBACK Simple payback (cost/annual savings) 1.11 1.55
REBATE2 Dummy for a rebate program 0.02 0.14
NUMARS Number at site 7.72 2.99

Units
fraction

thousand
million

thousand'
thousand

thousand $
million $

$/million Btu
$/ million Btu

years
fraction

Since the estimate by Harringtonet al is for a 3-year ti~e period, 1991-1994, the last
column of Table 2 gives the speed of adoption for that period, using the lAC data. Only four
technology groups have a speed similar to c=O.22$ They are generation, motors,
compressors, and lighting. For the other technologies, the speed estimates are aillower~ The
frrst of these, generation, is an artifact of the data, since the technology is infrequently
recommended~ T three are very commonly recommended; hence they may be more
comparable to the common technologies studied by Harrington et al.

Statistical Model

It is relatively common to represent the conditional probability to adopt a new
technology as a function of plant...specifc and technology-specific characteristics; hence, the

adoption is similarly a function of those variables. We use the probit model to
represent the technology choice:

z =~'X +8, Y =sign(z), E "J N(O,l). (2)
Various explanatory variables have been used in technology choice models. The models may
include variables that influence the perfonnance of the technology or firm/plant-specific
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differences between the potential adopters. This analysis differs from other models of
technology because

• A wide range of technologies and practices are involved rather than a single technology.
.. We do not observe the overall level ofpenetration of any given technology.

The first issue is handled in two ways. To the extent that these technologies. are all
"equal," they can be evaluated in tenns of a financial criterion. We use simple payback (i.e.,
annual savings divided by implementation costs). While this criterion has its drawbacks, the
program is frequently couched in those tenns, and information on technology lifetimes is not
sufficient to compute a criterion like internal rate of return. However, the technologies that
are recommended may not be equal in the minds of the decision makers, so a technology-
specific fixed effect is included in the vector of explanatory variables.

Table 20 Annual Speed of Adoption
Tech code Description 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1991-1994

11 Furnaces 0.11 0.08 0.05 0.04 0.03 0.01 0.02 0.01 0.03 0.02 0.01 0.06

12 Boilers 0.13 0.10 0.06 0.07 0.06 0.04 0.03 0.03 0.04 0.03 0.01 0.10

13 Fuel switching 0.18 0.17 0.08 0.04 0.03 0.05 0.07 0.04 0.03 0.04 0.00 0.10

21 Steam 0.14 0.11 0.09 0.06 0.08 0.04 0.05 0.06 0.06 0.07 0.02 0.19

22 Heating 0.14 0.10 0.02 0.03 0.03 0.02 0.01 0.04 0.03 0.03 0.00 0.10

23 Heat treating 0.00 0.00

24 Heat recover_ 0.16 0.09 0.07 0.05 0.05 0.03 0.05 0.04 0.02 0.02 0.01 0.07

25 Heat containment 0.13 0.09 0.09 0.07 0.03 0.04 0.04 0.04 0.04 0.05 0.01 0.12

26 Cooling 0.00 0.25 0.16 0.11 0.14 0.08 0.05 0.05 0.04 0.04 0.02 0.14

27 Drying 0.10 0.08 0.04 0.03 0.00 0.03 0.00 0.00 0.00 0.03 0.00 0.03

31 Demand mngnmt 0.17 0.09 0.05 0.03 0.04 0.02 0.04 0.05 0.03 0.04 0.01 0.12

32 Power factor 0.08 0.03 0.12 0.04 0.07 0.06 0.07 0.05 0.05 0.06 0.01 0.16

33 Generation 0.00 0.00 0.19 0.00 0.12 0.09 0.14 0.00 0.00 0.23

34 Cogeneration 0.18 0.10 0.00 0.07 0.00 0.15 0.04 0.00 0.00 0.00 0.04

35 Transmission 0.06 0.00 0.09 0.04 0.12 0.02 0.04 0.00 0.04 0.04 0.00 0.08

41 Motors 0.25 0.20 0.15 0.11 0.07 0.06 0.06 0.06 0.07 0.09 0.03 0.23

42 Compressors 0.19 0.10 0.07 0.07 0.05 0.05 0.05 0.06 0.07 0.08 0.03 0.20

43 Other 0.21 0.19 0.07 0.08 0.02 0.04 0.04 0.03 0.03 0.04 0.02 0.10

51 Systems 0.11 0.01 0.05 0.08 0.04 0.01 0.03 0.01 0.05 0.04 0.00 0.09

61 Maintenance 0.17 0.11 0.03 0.04 0.05 0.03 0.02 0.03 0.02 0.03 0.00 0.08

62 Equipmentcntrl 0.16 0.10 0.08 0.07 0.05 0.06 0.07 0.06 0.03 0.04 0.01 0.13

71 Ligiating 0.15 0.09 0.09 0.07 0.06 0.05 0.06 0.06 0.08 0.10 0.04 0.24

72 Space condo 0.16 0.10 0.07 0.06 0.04 0.04 0.04 0.03 0.03 0.02 0.01 0.08

73 Ventilation 0.20 0.01 0.06 0.09 0.08 0.03 0.07 0.05 0.03 0.01 0.01 0.10

74 Envelope 0.11 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.01 0.08

81 Admin 0.04 0.09 0.26 0.22 0.12 0.07 0.07 0.06 0.07 0.06 0.02 0.19

82 Shipping 0.48 0.12 0.03 0.03 0.03 0.00 0.00 0.03 0.00 0.00 0.03 0.03

The second issue has several ramifications for the analysis$ The obvious one is that it
IS to interpret the model esti~ated in terms of the standard adoption framework
presented above. To make the speed of adoption estimates presented above, we were forced
to compute adoption only from those plant that received assessments, and only beginning
with the IAC program inception0 For this reason, the comparisons of impact on speed of
adoption in Harrington et al require some caveats. The other ramification for the analysis is

525



(3)

(2)

that if a technology is already in place, either because it is commonly used in a particular
sector on simply· happens to be in place at a specific plant, then it will not be in the
recommendation database. This raises sample selection issues with regard to the data.

To determine how important this second issue is for the analysis, the study employed
a bivariate Probit model with sample selection. In the bivariate probit setting, data on Yl
might be observed only when Y2 = 1. Thus, in a bivariate probit model for the two outcomes,
the observed default data are nonrandomly selected from the set of applicants.

ZI = Pl'X1 +81, Yl =Sign(Zl)'

Z2 = 132' X 2+E2, Y2 = sign(Z2)'

E} ,8 2 -.J BVN(O,O,l,l,r)

(Yl' Xl) is observed only when Y2 =1
Abowd and Farber (1982) propose a model where Yl and Y2 are detennined sequentially, and
8 1 ,E 2 are uncorrelated. This framework seems to represent the process whereby a finn

agrees to an assessment and recommendations are made (Y2 =1).. We then observe the finns
decision to implement the recommendation (Yl' or 0).. In this case, the probability model is
as follows,

Prob[y=l]=Prob[Yl =1]xProb[Y2 =1] =<I>(~1'XI)cI>(P2'X2)'

Prob[y =0] =1- Prob[y =1].
we completely observed the assessment process (including the decision of firms to

participate in an assessment, whether or not a recommendation is'made, and the final
implementation of the recommendation), the process could be represented by a multistage
probito Each equation could be estimated separately, but would be statistically inefficient.
Since we do not completely observe the process of selection and recommendation, this step is
treated as sample selection..

We can infer something about the recommendation step in this process from the IAC
data. Since there is a system the IAC data that enumerates the "possible"
recommendations, we may infer that any recommendation not in the data was deemed
inappropriate for that firm~

How assessment teams find different technical opportunities will differ because of
issues some technologies are not used in different production

processes) and past implementation (i.eo a technology may have high potential but also has
largely been implemented)o As a separate analysis, we examine the likelihood of a specific
recommendation being made, from a small group of frequently recommended technologies.

This section reports on the analysis of recommendation probability, followed by the
results the adoption probability model. We cannot combine this analysis with the sample
selection analysis, since we do not observe the technology-specific explanatory variables
when a technology is not recommended (Le. when Y2=0 then data for Xl are not observed) ..

The question of sample selection, which includes both the process by which a finn is
contacted and decides to participate in an assessment and the process of making a specific
recommendation, is a potentially important statistical issue0 The likelihood of making a
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specific recommendation, given that a finn participates, is interesting in its own right. It is
possible to construct a data set that shows for every assessment whether a recommendation
for a particular technology is made or not. These data become the basis for analysis of the
likelihood of a technology being recommended, given a finn's characteristics. Some
technologies are so infrequently recommended that we focused on a subset of technology for
this analysis.

A probit model in the form of Equation 2 was estimated for each of the 14 two-digit
technology classes with recommendation rates greater than 10%. The explanatory variables
included dummy variables for the two-digit SIC reported by the plant, dummy variables for
each year, and plant-specific sales, number of employees, production hours, and energy
prices for electricity and natural gas. The sales and employment variables were included to
capture scale effects. Production hours capture plants that operate continuously versus
cyclically. The results for the plant-specific variables, represented as an increase in the
recommendation probability given a doubling (100% increase) of the corresponding variable,
are shown in Table 3$ The estimates shown in bold are statistically significant at the 95%
confidence leveL

Table 3e Change in Recommendation Probability for :a 1000/0 Increase in the
Corresponding Variable

SALES EMPLOYEE PRODHOURTechnology
Description
Boilers
Fuel switching
Heat recovery
Heat containment
Demand mngmnt
Power factor
Motors
Compressors
Other
Equipment control
Lighting
Space conditioning

Admin

Recommendation
Frequency

26%
12%
31%
25%
17%
11%
59%
63%
17%
28%
84%
38%
20%
11%

0.20%
-0.39%
0.19%
-0.19%
0.03%
(t45%
lQJ85%
0.47%
0.50%
-0.73%
-lJ)OO~

0.15%
-1~12%

....0098%

3&320/0
0.73%
2@22%
1.03%
0.82%

-le44%
-0.54%
2@23%
0.91%
0.15%

...0.64%
1.31%

-1.00%
0.54%

0.59%
1..59%
1.30%
3&60%

-0.18%
1..24%
13.67%
-2.06%
0.66%

-3..390/0
-1.17%
...7..78%
-2..290/0
-0.26%

1.34%
8.97%

....9037°~
0.41%
2.35%

-11&94%
4.95%
3.62%
2.72%
-3094%
-0.52%
0.49%
2e64%
3067%

-0.56%
-0.27%
1.41oAt
0.28%
1.67%
-1.930/0
0.80%
0.53%
0.63%
1024%
2026%
0.59%
0.98%
0.57%

the estimated effects are modest in size relative to the
plant-specific variables There is also no dominant pattern

sign many significant coefficients. Smaller plants (in tenus of sales)
'li"'OJl""''1It.::lo''(:ro more lighting, envelope, and administrative recommendations, while larger plants
recieve higher power factor and motor recommendationss Plants with more employees have

rates recommendation for boiler, heat recovery, and compressors, but lower rates
for power factor.. Lower production hours result in more space conditioning, envelope, and
equipment control recommendations and less fuel switching, heat containment, power factor
and motor recommendations. Energy prices also do not have a dominant sign, but frequently
are reasonable when the technology type is considered.. High electricity prices result in more
frequent fuel switching, motor, compressor, other, envelope, and administrative



recommendations. Many of these technology classes are electricity specific. Heat recovery,
power factor, and equipment controls have the opposite sign. When significant, higher gas
prices increase the recommendation rates for heat recovery, demand management, equipment
controls, and lighting and lower rates for power factor recommendations. The detailed
dummy variable results are available from the author.

The probability of re.commendation is one step in the decision process for these
energy-efficient technologies. Recommendation does play an important role in the sample
selection issues, discussed above. .The previous section showed that the recommendation
process is complex and difficult to fully observe. The next step in the decision process is
taken by the plant/firm decision-maker.

In light of statistical concerns, over sample bi~, md evidence from the previous
section that there are systemati~ effects on the recomm:endations, w'e attempted t(l estimate: a
model in the form of Equation 2 using, the Abowd and Farber approach. The results were
unsatisfactory. For many specifications of the explanatory variables, Xl: and X2, the
covariance matrix was singular or nearly so. In the cases where this was not the problem, an
examination of the predicted values found that the model tended to correctly predict
adoptions at very high rate and nearly none of the non-adoptions. Since the adoptions
slightly outnumber the "non-adop:tions", the sample selection model degenerated into a naive
fonno By "naive," we mean that a naive prediction would always guess that all of the
technologies were adopted. Since the sample adoption/non-adoption rate was closer to 60/40,
the naive model will at least perform better than a 50/50 guess. The sample selection models
estimated were slightly better than this, but not much. The reason suspected for this poor
perfonnance is two-fold. The first is that many variables that could be included in the sample
selection equations are quite clearly of interest in the adoption equation, becaus~ the
recommendation should capture many, if not all, of the interests of the decision-maker~ The
second is that industry and technology-specific effects could easily be included in the sample
selection or adoption equatione The paper only reports results from the simpler modeL

The adoption decision may be influenced by technology effects (e.g. cost savings, and
effects, eog~ size)e presented here considered a number of both fum and

technology effects. The technology effects include initial cost, simple payback, rebate, a
technology class dummy variable, and a technology class price variable. Firm effects include
size, number of recommendations made, a dummy variable indicating whether a
recommendation ranked in the top half of the total list of recommendations (in terms of
simple payback), and a SIC dummy variable. Firm size is measured by number of
employees 9 Earlier versions of the model included both employment and sales as in the
recommendation model, but the sales coefficient was consistently insignificant. Other finn...
specific effects that were initially included in the model were energy intensity (energy
expenditures relative to sales and employment), energy mix, and production hours. Other
technology-specific effects that were initially included in the model were the ratio of initial
cost to sales and a dummy variable for recommendations that reported no (zero) initial cost.
These variables were never significant and so they were dropped from the specification
reported below. The logic for trying these specifications is discussed when interpreting the
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other results. The results for the nondummy variables are reported in Table 4. The results are
expressed as the change in adoption probability resulting from a 100% change in the
corresponding variable, evaluated at the data mean.6

t-ratioChange in adoption probability

Table 4: Change in Adoption Probability for a 100% Increase in the Corresponding
Variable

Variable'

Employees (hundreds ofpersons)
~UInberofreconunendations

Payback
Implementation cost (thousand 1992$)

direct effect
Implementation cost (thousand 1992$)

total effect
"Lower" payback
Rebate

0.86%
1.89%
-2.24%

-0.29%

-0.57%
3.80%
7.29%

2.36
2.32
-8.00

-2.94

-5.47
4.78
3.16

Doubling the number of employees increases adoption by about one percentage point.
This result supports the notion that'larger finns are more likely to adopt. Since the sales
variable is not significant, but the employee variable is, we intetpret this result as supporting
the notion that more employees are a valuable resource for implementation. If
recommendations compete with each other, then increasing the number of recommendations
might actually reduce the chance of adoption. The estimate supports the opposite hypothesis
rejecting the notion that more recommendations, at least in absolute number, might result in a
"squeezing out" effect. The simple payback (i.e. the ratio of initial cost divided by savings')
is a simplistic measure of economic return attributable to the recommendation. Nearly all
the recommendations in the lAC have a payback of 3 years or less.s As such, most of these
recommendations would be "economic" by many simple rate-of-return criteria. However,
differences the payback do influence the decision. Increasing the number of years of
payback from 1 to 2, i.e. about a 100% increase from the sample mean, lowers the adoption
probability by 2.24%. Payback includes the effect of the technology in terms of savings, cost

energy, and initial cost.
We consider possibility that differences the cost or price may have a separate

Jl.JIl.J&..&.Ii-.' __ 1Lo beyond the payback ratio. return to the price effect issue below.
model estimates that separate cost effect is about -0.3% for each 100% increase in

the cost. total e ct an increase in cost is the direct effect and the indIrect effect due
to a change the which we compute as about double the individual components,

O.6%)~

6 It might be more accurate to represent these results in terms of the change in probability for a smaller change
in the variable, say 1%, since the results are based on the derivative of the adoption probability with respect to
the variable evaluated at the mean.
7 Since some recommendations are fuel switching or have operating costs, net savings are computed from the
data reported to the lAC and are used to compute payback.
8 Since many recommendations have no reported (capital) cost, the payback for which is zero, an earlier version
of the model included a dummy for this group of recommendations, but it was never significant.
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Another effect that the payback ratio may have in the context of the decision process
is the comparison ofthe recommendations, since they are presented to the decision-maker at
the same time. Aside from the role that payback has in measuring the economic desirability
of the recommendation, it provides a ranking of the recommendations. To see if this ranking
effect is significant, we construct a dummy variable that indicates whether the
recommendation is above or below the median for that assessment. The estimates show that
recommendations with lower payback have a 3.8% greater adoption probability,
demonstrating a significant ranking effect. The lAC data also indicate whether there is a
rebate from some demand-side management or some other similar program. Those
technologies have a 7.3% larger adoption probability. It is not clear from the IAC
documentation whether the rebate is included in the cost estimate (Le., if cost is net of the
rebate). If this is the case, then the rebate variable acts as a signal to the decision-maker that
the technology has been preapproved. Even if the rebate is not accurately reflected in the
cost, the impact of this variable, in terms of adoption probability, is more than 12 times larger
than that of the indirect implementation cost 'estimate anc;l is likely to be larger than the effect
on cost alone. For this reason, it is concluded that the rebate variable does serve an
important signaling function.

Energy prices also affect the payback of a technology, for a given level of savings. In
the same manner that costs are allowed to have a separate effect on adoption, energy prices
are allowed to have a separate effect. Since some technologies are energy specific (e.g., can
only result in electricity savings), a technology-specific electricity and natural gas prices are
included in the mode1.9 These price effects are shown in Table 5 as the change in the
adoption probability for a' one-dollar increase in the corresponding price. The expected sign
of the energy price effect is positive (i.e., higher prices make a technology economic and
more likely to be adopted). The impact of energy prices in terms of the payback variable, as
discussed above, is 0.1% for electricity prices and 0.5% for fuel prices. Table 5 shows that
there are four recommendations that have a statistically significant (10% confidence level)
positive effect for both electricity and natural gas$ However, there are two statistically
significant negative effects estimated for electricity and four for natural gas9 One way that
these negative effects would have economic meaning is if there was a substitution effect in
the technolo'gy or a squeezing out effect in tenns of competition between technologies.

fOffi1 of the model estimated included dummy variables for SIC and
technology class effectse The dummy variable for SIC 34 was dropped to avoid a dummy
variable trap. The results show that the petroleum industry (SIC 29) is more likely to adopt,
with pulp & paper, rubber & plastics, and instruments being less likely to adopt. For
technology-specific effects, furnace, steam, motors, compressors, lighting and administration
are significantly more likely to be adopted. Fuel switching, heat recovery, demand
management, and cogeneration are significantly less likely to be adopted, other effects held
constant& Detailed results are available from the author.

9 In an earlier version of the model, electricity and natural gas prices were included and were either insignificant
or the wrong sign. When the technology-specific prices were included, the overall price effects were not
significant and were dropped from the model presented here.
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Table 50 Change in Adoption Probability for a One Dollar per MBtu Increase in
the Corresponding Price (estimates in bold are significant a.t 90% confidence)

Recommendation
Description

Furnaces
Boilers
Fuel switching
Steam
Heating
Heat recovery
Heat containment
Cooling
Drying
Demand management
P{)wer Factor
Cogeneration
Transmission
Motors
Compressors
Other
Systems
Maintenance
Equipment control
Lighting
Space conditioning
Ventilation
Envelope
Admin

Conclusion

11
12
13
21
22
24
25
26
27
31
32
34
35
41
42
43
51
61
62
71
72
73
74
81
82

-0.20% -0.61
0.24% 1.13

-0.13% -0.36
O.43°A» 1067
0.08% 0.09
0.10% 0.43
0.04% 0.23

-1&17°~ -1065
2.09% 1.00
(t53% 1&74
-0.34% -0.80
0.09% 0.08

-0.66% -0.52
0.10% 0.74
0.14% 1.00

-0090% -2.84
1.00% 1.38
1.15% 2,J7
-0.10% -0.46
0.03% 0.26
0,,57% 3..14
-0.67% -1.02
0.20% 0.76

-0.42% -1.21
0.43

Natural Gas Price
Change t-ratio

-3.06% -1053
0.94% 0.91
1.70% 1.05

-0.67% -0.61
1.57% 0.38
2.470/0 2072
0.50% 0.55
4016% 1.56
-3.21% -0.47
-1.01% -0.69
0.06% 0.03

13.67% 1.90
1.48% 0.27

-0.56% -0.85
0.72% 1.14
2.66% 1.89

-51)31 % -1.71
-3046% -1*48

0.68% 0.72
-0.01% -0.01
-0.72% -0.86
3.13% 1.06
0.36% 0.29

-40070/0 -2001
0.61% 0.08

identifying (recommending) and
analysis insight into the speed at

decision process*
_"""'''''''''''''''I.._.A.A V~"'Ja...a..8I..Ji.'""'V computed here for motors, compressors and

.........A. ......, .................. to those reported by (Hanington, Kopp et at 1999), but our
,",,,,"VJa..LLJl.'V.Ji.V'fM,,A.,,,,IU examined~ The speed of adoption estimate is

subsequent adoption of the technology, which may
technology-specific variables. The influence of these variables

V..I''A.,,4,A.Jl..AAJl..I.,,,",''t,.&. as two separate probability models or a joint model, which reflects sample
~rt'1t"'li4l"'lY"llln·ro. the effect firm and technology-specific variables both approaches

are ultimately the separate model approach was chosen and reported.
the recommendation and adoption stage, a probit model is used to estimate

impact finn-specific and technology-specific variables~ Firm variables reflect
conditions that influence the decision for energy technologies general, while technology
variables the differences between recommendations.. Larger finn size tends to



increase the probability of recommendation, although not for every technology examined.
Larger firm size also leads to higher ad~ption rates. Employment was the preferred measure
for finn size for the adoption decision and resulted in slightly more coefficients with
significant and economically consistent results for the recommendation models. SIC­
specific firm effects were also found.

The technology-specific effects included payback, costs, and prices. The payback
variable behaves consistently with economic theory, increasing adoption as payback falls and
the corresponding economic return rises. However, there is an additional impact of higher
costs, which suggests that decisions operate Under a capital constraint. This result is
consistent with the hypothesis of capital rationing. Attempts were made to capture this
constraint with a ratio of cost to sales, but it was not significant, since sales are not a good
proxy for financial health. Other results suggest this rationing effect. Recommendation that
ranked better in tenns of payback (i.e., were in the upper half for the recommendation made
to a finn), were more likely to be adopted when payback was held constant. In other words,
the adoption decision was made in light of other better or worse recommendations, not an
absolute criterion alone. The presence of a rebate for a technology .also has a signaling
function, greatly increasing the adoption probability.

The price effect on adoption is more elusive. On one hand, prices have a direct
influence on payback, and this effect was significant but relatively small. In this sense, prices
tended to have an economically consistent impact on recommendation, but direct effects on
adoption (beyond those embodied in payback) were less consistent and difficult to interpret.
Nevertheless, this analysis does provide evidence of a small, statistically significant price
effect on both recommendation and adoption and hence on the resulting speed of adoption.

This analysis may understate the influence of variables from the observed data in the
lAC. Muller et at (1995) reports the results from a callback survey of 104 past assessments
that 28% more recommendations were implemented beyond those originally reported. In
addition, this analysis also did not have information on whether a technology had already
been implemented and hence never recommended, so nonrecommendation does not imply
that a given technology is not economic and could possibly mean the opposite. This would
tend to bias our speed-of-adoption estimates.
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