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ABSTRACT 

Uncertainty in building occupancy can lead to significant variations in electric lighting 
use. In its first six months of operation, the National Renewable Energy Laboratory’s Research 
Support Facility (RSF) exceeded its modeled electric lighting energy budget because of 
unanticipated occupancy patterns in the evenings. This experience highlights the potential 
usefulness of modeling occupancy uncertainty and its impact on loads such as lighting energy 
use, while at the same time pointing out the difficulty of appropriately bracketing and 
quantifying all reasonable scenarios. In this paper we build on the RSF example to develop 
models for uncertainty in electric lighting use caused by uncertainty in building occupancy and 
interactions with lighting controls, especially in office buildings with open work space. The 
models so developed may be used by engineers and architects to understand how lighting control 
strategies affect energy usage under occupancy uncertainty. We also use our models to reflect on 
the RSF modeling process, and subsequent experience with the physical building and lighting 
use mitigation strategies. 

 
Introduction 

 
Building energy simulations are typically relied upon to provide a design-point 

calculation of the building energy consumption, but rarely are the simulations utilized to assess 
real-world performance variation. Most building operators recognize that there is some level of 
uncertainty in building use, operations, and weather conditions, often leading to a significant 
difference in predicted and actual energy consumption (Clevenger & Haymaker 2006). 
Additional uncertainties and inaccuracies arise from the simplifications necessary to model 
complex building geometries, equipment, and controls systems in an energy simulation program 
(Wit & Augenbroe 2002). These two types of uncertainty lead to challenges in the design 
process, particularly in the case of design  optimization and decision making (Eisenhower et al. 
2011; Hopfe 2009; Jacob et al. 2010; C. Struck & P. Kotek 2009; Christian Struck et al. 2007). 
Much of the current literature uses uncertainty as a means to assess the sensitivity of the 
building’s energy performance to variation in a large number of variables (Eisenhower et al. 
2011; Wit & Augenbroe 2002), or to a limited subset of variables, such as construction materials 
(C Struck & J Hensen 2006), and schedules (Clevenger & Haymaker 2006; Zhao et al. 2011). 
Occupant behavior, which in energy simulations is modeled using schedules, presents a 
particularly interesting challenge since occupants not only impact energy use directly, but also 
interact with lighting and other control systems.  Recent experience at the National Renewable 
Energy Laboratory’s Research Support Facility (RSF) highlights the importance and difficulty of 
capturing such model uncertainties. Capturing and appropriately modeling uncertainty within a 
building will allow for better prediction of actual energy usage as well as allowing designers to 
incorporate systems to help mitigate uncertainty in energy usage. 
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The National Renewable Energy Laboratory is home to the Research Support Facility 
(RSF), which began operating in mid 2010. The RSF was designed with an extremely demanding 
energy target (35 kBtu/sf/yr normalized including a data center, approximately half of typical 
office buildings in the Denver metro area (Guglielmetti 2011)).  According to the 2003 
Commercial Building Energy Consumption Survey (CBECS), lighting directly accounts for 25% 
of an office building’s site energy use, and 39% of its electricity use, on average (EIA 2003). 
Thus, detailed attention was paid to the design of the RSF’s lighting systems, particularly in the 
open offices and corridors, where very high levels of daylighting are used to minimize this 
energy end use.  Additionally, an aggressive electric lighting control sequence was implemented 
to try to limit use outside typical work hours by automatically sweeping off a majority of lights 
(with the exception of a single light over entrances, exits, and stairwells). 

Within the first few months of operation it was observed that the lighting energy use was 
significantly higher than expected, primarily on weekdays outside of prime working hours (8am 
– 5pm).  Part of this was attributed to cleaning and maintenance crews working from 6-10pm, 
turning the lights on, but not switching them off so that they stayed on until the next sweep at 8 
or 10pm.  This pattern is evident in Figure 1, which shows the deviation between the expected 
and actual lighting use broken down into day types (weekday and weekend/holiday), hour and 
month. The median values in Figure 1a demonstrate that the predicted weekday lighting use was 
accurate from hours 1-16 and 23-24, but in hours 17-22 a significant unexpected shift was 
observed. The large variances in hours 7-17, and to some extent, the additional energy use seen 
in those hours (a moderate positive shift of the median value) is attributable to variations in 
daylight availability, which are particularly pronounced in January. In contrast, there is little 
variance in electric lighting use in hours 17-22, but rather a more deterministic shift associated 
with the unanticipated presence and behavior of occupants during these hours.  As a fraction of 
the averaged metered load for January the variance can be significant particularly during hours 7-
17 while the variance outside of these hours is small in relation to the average load.  The amount 
of variance in relation to the average is even larger for the weekends but it is a much smaller 
average load. 

Overall, the data shown in Figure 1 shows that the lighting energy use of open-plan, 
daylit office buildings varies day-to-day and hour-to-hour, in response to both weather and 
occupant interactions. It is also easy for even a highly engaged design team to miss entire 
occupant populations and their likely behaviors. This case study highlights the need for a better 
understanding of the (stochastic) relationships between weather, occupants, controls, and electric 
lighting use; and also the need to somehow capture possible occupancy patterns outside of the 
primary use of the space. Understanding these relationships further will help both in the design 
phase and the actual building use phase.  By developing better understanding, including 
stochastic relationships, building designers will be able to incorporate uncertainty into the design 
phase and create designs which help mitigate future energy use uncertainty. Additionally the 
understanding will be useful when a building is in operation for the ability to test out new 
lighting control strategies to reduce unwanted variation not initially captured or controlled after 
the design phase. 
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Figure 1. Difference between Metered Load and Modeled Load, a) January 2011 
Weekdays, b) January 2011 Weekends/Holidays.  

(The whiskers show the minimum and maximum values, the second quartile is red, and the third quartile is green.) 
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The need for modeling occupant behavior is well recognized in the literature (Bourgeois 
et al. 2005; Wang et al. 2005; Clevenger & Haymaker 2006), and many models have been 
proposed. Furthermore, the potential impact on lighting use has also been investigated 
(Clevenger & Haymaker 2006; Bourgeois et al. 2005). Only two of these works have 
investigated the uncertainty with occupant behavior (Zhao et al. 2011; Clevenger & Haymaker 
2006); One of these is primarily focused on the development of advanced models to incorporate 
uncertainty into the occupant behavior while the other takes a much simpler high/medium/low 
approach to understand the sensitivity of total energy use.  Occupant behavior has been 
statistically investigated by a variety of authors under very specific conditions not representative 
of the open office environment. Wang et. al looked into developing a statistical occupancy model 
for a single office and determined that vacancy, not occupancy, could best be modeled with an 
exponential distribution (Wang et al. 2005). Others have taken multiple sets of commercial 
building office data and tried to link occupancy and lighting usage statistically but are limited to 
manual controls (Rubinstein et al. 2003; Mahdavi & Pröglhöf 2009) but have shown that 
occupancy and lighting may be correlated further through the total illuminance available upon 
arrival (Mahdavi & Pröglhöf 2009).  While these studies have shown that occupancy and lighting 
can be potentially modeled with statistical models they have all been limited to manual controls 
and primarily private offices. 

In this paper, we model, measure, and study the interaction of occupant behavior and 
electric lighting energy use in open office spaces typical of the RSF. Detailed occupancy and 
lighting use data was collected from several RSF spaces, post the interventions (training of the 
custodial staff operating during the evening hours) taken to address the initial measured to model 
deviations seen in the evening hours. The next section describes the spaces in which the data 
were collected.  We then go on to analyze the data in an initial attempt to gain understanding into 
the possibility of developing probabilistic models. Additionally we note the challenges and 
limitations of the current data set and the data needs to develop more detailed models. While 
uncertainty in daylight availability should ultimately be folded into these models as well, that is 
outside the scope of this paper, although we hope to take up that question as future work.  

 
Modeling Occupancy Effects on Electric Lighting Use  

 
In this section we focus on describing the space both monitored and modeled.  We first 

present the space and describe the lighting design and operation, followed by a description of the 
data collection that was performed.  Finally we statistically investigate two primary spaces to try 
to further understand the interaction of occupancy with lighting use and develop statistical 
models for quantifying the occupancy effects on electric lighting use. 

 
RSF Space Descriptions 

 
We investigated two spaces: a large open office and a kitchen serving the open office 

(Figure 2). The RSF is divided into east and west wings. All the data collected in this study 
comes from the east wing. During the design-build contract period, the open office space lighting 
was modeled, designed, and commissioned for aggressive electric lighting energy savings 
through the use of coordinated daylighting, ambient and task electric lighting, and ambient 
lighting control schemes. The integrated design of the building relies heavily on space 
programming and the details of the interior finish. All office surfaces are light in color, and most 

7-215©2012 ACEEE Summer Study on Energy Efficiency in Buildings



occupants are located in cubicle workstations with low walls. Semi-private offices are located on 
the north wall to minimize their impact on the daylight saturation of the rest of the space. Along 
with daylight redirection technologies, the overall design gives very high daylight saturation that 
conforms to the LEED IEQc8.1 daylighting requirements. The open office was iteratively 
designed and modeled to maximize daylight saturation. The final daylighting design, control 
equipment, and sequences were modeled in detail to predict actual, required ambient lighting 
power density and usage schedules for different space types. 

The lighting controls ensure that the space lives up to its potential in terms of electric 
lighting energy use savings. The open office wings are sixty feet wide, and are divided in two 
electric lighting switching zones.  The perimeter zones use a bi-level switching control that turn 
the lights on, half-on, or off to daylight availability. These systems account for one third of the 
installed lighting power density.  In the core of the open office space, a continuous dimming 
system takes advantage of available daylight. These lights are never fully turned off by the 
dimming controls, but only in response to manual switching. The specific control design is for 
lights to be turned on manually by occupants if needed as they enter the space in the morning, 
guided by always-on night lights near entrances and light switches. As daylighting increases 
throughout the day, electric lighting in all offices and corridors will dim or switch off in 
response. Manual on/off capability by occupants is always enabled. At 6:30 pm, a timed event 
cause all open office and corridor lighting to blink, warning occupants that the lights will turn off 
in five minutes. Occupants can override the sweeps, which occur every two hours throughout the 
night, that is, at 6:30pm, 8:30pm, etc. All enclosed spaces such as kitchens and closed offices are 
controlled based on local occupancy control. The kitchens are true occupancy sensors in that if 
the light switch is in the on position then the lights will turn on when occupancy is detected. The 
closed offices use vacancy sensors that must be manually turned on at each arrival.  

The kitchen lighting design accounted for daylight availability and occupancy-triggered 
controls, but was not modeled aggressively from a daylighting point of view because of both 
location and size. There are no daylighting controls, and occupancy sensors were modeled with a 
simple 10% LPD reduction as recommended by ASHRAE 90.1. The kitchen is comprised of 
undercabinet and overhead lighting that is controlled via line voltage, manual switching and 
auto-off overrides triggered by the switch being on but the space vacant.  The occupancy sensor 
turns lights on automatically only if the manual switch is in the on position.  

 
RSF Occupancy and Lighting Data Collection 
   

A challenge in creating occupancy-lighting models is that underlying any data set is a 
lighting control scheme that influences occupant interaction with a lighting system.  This 
underlying occupancy-lighting system interaction limits the applicability of a model, built upon 
building specific real-world data, that can be used for effective prediction of a new lighting 
control scheme. Although this underlying challenge is significant, we can still use data to drive 
the development of the models while keeping in mind how the data factors into the model 
development.  Due to the large space size of the open office space it is not possible to achieve 
full coverage occupancy logging. Rather, occupancy loggers are used to track whether people are 
entering or exiting the space.  Although this limits the true knowledge of occupancy it is still of 
relevance for determining the interactions of people with the lighting system.  

The kitchen space is small enough to have full coverage with the occupancy loggers 
allowing for direct capture of lighting use and occupancy. The monitoring of lighting usage in 
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this space provides interesting insight into the impact of daylighting on occupant behavior.  As 
previously mentioned the kitchen spaces were not designed with aggressive daylighting but do 
receive some low level daylighting (~5 fc) that may impact the observations seen with logged 
data. The location of the occupancy and lighting sensors are highlighted in Figure 2 for the open 
office space type considered. The occupancy and lighting sensors are not displayed within the 
kitchen space due to the relatively small size. All spaces were monitored from January 7 through 
February 12, 2012 using WattStopper IT-200 occupancy and light loggers. 

 
Figure 2. Approximate Location of Lighting and Occupancy Sensors in Open Office Space 

and Location of Spaces within RSF Building 

 
 

RSF Occupancy and Lighting Data Analysis 
 

In this section the occupancy and lighting use variations are investigated as a function of 
day type and time of day.  Specific concern is paid to what type of statistical model will best fit 
the data and how well occupant level variation can be used to explain lighting use variance. 

 
Kitchen space analysis. The first step was a simple breakdown of the variations observed for 
weekdays and weekend/holidays.  The data are grouped by hour and utilize a method where an 
occupancy of 1 for a given hour means the space was fully occupied for the hour, if 0.5 then it 
was occupied 50% of the time which may be exaggerated due to the timeout settings (five 
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minutes) of the loggers.  The same structure applies to lighting for the kitchen space.  While 
observing the kitchen space on weekend days only limited occupancy was observed with zero 
lighting usage. Figure 3 displays the average weekday occupancy and lighting usage for the 
kitchen space.  The data shows that from 11PM-6AM the occupancy is zero and lighting usage is 
zero or very low.  When the typical work day starts both occupancy and lighting increase in the 
morning, decrease until a lunchtime peak, then in the afternoon it is observed that occupancy is 
generally very small but lighting usage is seen to spike at 7PM, most likely associated with 
custodial staff presence.  The results also indicate a change in behavior with the presence of 
daylighting.   As noted the kitchen spaces do have a small amount of dayligthing allowing users 
to most likely perform quick tasks (opening refrigerator, throwing out trash, etc.) without turning 
on the lights but more lengthy tasks (preparing coffee and meals) will likely require turning on 
some form of lighting.  Because of this we investigated specific hours to look at a more detailed 
level of occupancy lighting interactions at key hours. 

 
Figure 3. Average Hourly Weekday Occupancy and Lighting Usage for the Kitchen Spaces 

(solid line – occupancy, dashed squares– undercabinet lights switching profile, dashed 
triangles – overhead lights switching profile) 

 
Further investigation into the data used in figure 3 reveals additional interesting 

conclusions about occupancy interactions with lighting. For key selected hours the occupancy 
profile for each weekday is plotted against the switching profile on weekdays for both the 
overhead (two-thirds of the total kitchen fixture light output) and undercabinet lights (one-third 
of the total light output). The switching profile represents the fraction of the time within a given 
hour that the lights are on to full power output (i.e. if the switching profile is point 0.5 the lights 
were on 50% of the time for that hour, if at full power, or were on the full time at 50% power). 
Figure 4a and 4d exhibit what initially appears to be a relatively strong correlation of low 
occupancy to low lighting but upon investigating other hours this breaks down. Figure 4b and 4c 
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are the hours of 12PM and 8PM respectively both have similar mean lighting levels but 
significantly different mean occupancy profiles.  It should be noted that for any given hourly or 
total weekday set of occupancy lighting data, no simple linear correlation could be found with an 
R2 value greater than 0.5.  This result significantly differs than that reported in (Mahdavi & 
Pröglhöf 2009) where a much more significant correlation could be found. Our initial conclusion 
is that two underlying effects are occurring that are not captured here: daylighting and task.  
With respect to daylighting it can be seen in Figure 3 with the significant decreases in lighting 
without significant decreases in occupancy.  The task effect can be seen at the prime lunch hours 
12 and 1 PM where the lighting also peaks while the daylighting is also at a maximum indicating 
that even though there is some daylighting more complex tasks in the kitchen like preparing 
lunch leads to more lighting usage.  This result is similar to what was previously reported where 
a strong correlation was seen between illuminance level and relative frequency of switching on 
lights (Mahdavi & Pröglhöf 2009). 
 

Figure 4. Relationship of Occupancy to Lighting Switching Profile for Hours: a) 7AM, b) 
12PM, c) 8PM, d) 10PM (Mean And Standard Deviations for Occupancy, Overhead, and 

Undercabinet Lights respectively) 
a) 7 AM

 

b) 12 PM

 
c) 8 PM

 

d) 10 PM

 
 
 While the results shown above demonstrate that more complex interactions may be 
needed further study was taken to investigate how a joint occupancy lighting model, a 
probabilistic model that includes uncertainty in occupancy that drives the uncertainty in lighting 
usage, may be developed.  The first step was to assess the probabilistic distribution of both 
occupancy and lighting. Selected hours are plotted in figure 5 for the occupancy distributions 
which display a strong dependence on time of day.  Such histograms show that occupancy profile 
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may best be represented by a beta distribution where the two shape parameters would be time 
dependent. 

 
Figure 5. Kitchen Weekday Occupancy Histograms: a) Hours 20, 21, and 22, b) Hours 9, 

11, 12 & 13 
a)   

 
b)

 
 

Similarly we investigated the lighting profiles and it was revealed that all followed an 
exponential type distribution for the kitchen space. We stopped short of developing the 
distributions proposed due to the need for further investigation of additional effects. 
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Open office space analysis. Similar to the kitchen space we investigate the monitored lighting 
usage within the open office space. As noted the occupancy sensors cannot provide full 
occupancy coverage but rather provide an indication of someone entering the space, deemed the 
entrance profile.  Again it should be mentioned that the open office space type in the RSF was 
designed to achieve high levels of daylighting throughout the space. Figure 6 presents the 
weekday variation in switching profile and entrance profile for the open office space.  From 
Figure 6 the impact of daylighting can mildly be observed due to the less than 100% switching 
profile during near maximum peak occupancy.  It also becomes clear that the late afternoon, 
early evening hours have significant lighting use potentially reflecting occupant behavior 
differences between groups who arrive early versus stay late at work, although this could also be 
linked to daylighting and highlights the need for additional monitoring of daylighting 
illuminance levels.  As mentioned previously this is also compounded with cleaning and 
maintenance crews working primarily in the evening hours. 

 
Figure 6. Average Hourly Weekday Entrance and Switching Profiles for the Open Office 

Spaces (solid line – entrance profile, dashed – swithcing profile) 

 
 
 In addition to observing the hourly trends a similar investigation into the frequency 
distributions of the switching profiles to that of the kitchens was performed. The impact of 
daylighting is strongly observed in Figure 7 by observing the frequency distributions associated 
with various times of the day. In the early hours the switching profile is typically low while 
during the middle of the day (peak daylighting) the switching profile follows almost a unform 
distribution, with the late evening hours having high levels of switching profiles.  Figure 7 
reveals a novel progression that seems to be previously unrecognized in the literature of a highly 
time and occupant dependent statistical distribution that changes distribution type depending on 
the level of daylighting but also on the occupant. The first effect, daylighting, is linked to the 
time of day where it can be observed that switching profiles frequency distributions vary as a 
function of the time of day. Particularly of interest are the potentially uniform distributions 
during hours of peak daylight.  The second effect, the occupant, which is just primarily 
qualitative at this point is based upon the assumption that office workers working later into the 
evening may have different lighting desires than those arriving early in the morning. This effect 
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is certainly intertwined with the first effect and further justifies the need for further study.  Based 
upon these results further investigations are warranted to also try to track illuminance levels in 
the space as well as come up with a way to get a more realistic grasp on the actual occupancy. 

 
Figure 7. Variation in Open Office Switching Profile Frequency Distribution as a Function 

of Hour of Day 
 

 
 

Conclusions 
 
Through the detailed data collection and statistical modeling performed within it was 

shown that using occupancy as the sole variable for describing lighting use variations was not 
adequate.  In particular the kitchen space where a small amount of daylighting is available 
lighting use did not correlate with occupancy or with hours of maximum daylighting indicating 
that additional factors are important.  One potential factor is the task of the occupant in 
conjunction with the available daylighting leads to different lighting use scenarios. For the open 
office space type daylighting seems to be a much stronger factor in affecting the interaction of 
occupants with a lighting system.  Of particular interest is the changing frequency distribution of 
the switching profiles which ranges from exponential to normal to uniform depending on the 
time of day and daylighting.  This dynamic suggests that further studies are needed for both 
space types to get a full understanding how occupant uncertainty leads to lighting uncertainty 
particularly in the presence of daylighting and spaces where occupants perform a variety of 
different tasks. 
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