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ABSTRACT 

In the building energy research and advanced practitioner communities, building models 
are perturbed across large parameter spaces to assess energy and cost performance in the face of 
programmatic and economic constraints. This paper describes the OpenStudio software 
framework for performing such analyses. The framework may be accessed through C++, Ruby, 
and C#, and features a flexible problem formulation method that allows for customizable 
building energy modeling variables and simulation workflows. Two case studies are presented. 
The first demonstrates the use of the framework as the back end to a standalone graphical user 
interface application. It highlights a user interface’s ability to make the functionality accessible 
to a broad audience. The second demonstrates the framework’s use in scripted analyses and 
highlights the flexibility and repeatability offered programmatically to advanced users. Finally, 
as the framework is available under the open source, GNU lesser general public software license, 
we discuss how one might extend its functionality to cover more problem types and algorithms. 

 
Introduction 

 
Once a building energy modeler has created and evaluated a building energy model, she 

may progress to evaluating multiple energy efficiency measures (EEMs) relevant to that model. 
This is often done by perturbing the baseline building model to determine how energy and cost 
performance are affected by each EEM. For example, a modeler might increase the efficiency of 
the HVAC unit, try a different HVAC system, swap out the lighting design for one with a lower 
lighting power density (LPD), or change the size and location of windows on a façade. Although 
each change may seem desirable in isolation, their actual appropriateness for a given building 
will depend on cost, location, geometry, loads, HVAC system, occupant behavior, and economic 
criteria. Furthermore, the impact of one perturbation may change in the presence of another. 
Capturing the combined effects of multiple perturbations is a key reason to use a whole building 
energy simulation engine such as EnergyPlus (DOE 2011). For a single design and small 
numbers of EEMs, the analysis process can be managed with the help of basic modeling tools, 
spreadsheets, and text editors. However, as the number of prototype designs, locations, or EEMs 
increases, more sophisticated tools are needed to determine which model alternatives to simulate, 
to manage the processes of creating and running the models, and to assemble results from 
hundreds or thousands of models. 

                                                 
1 The Alliance for Sustainable Energy, LLC (Alliance), is the manager and operator of the National Renewable 
Energy Laboratory (NREL). Employees of the Alliance for Sustainable Energy, LLC, under Contract No. DE-
AC36-08GO28308 with the U.S. Dept. of Energy, have authored this work. The United States Government retains 
and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a 
non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or 
allow others to do so, for United States Government purposes. 
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The literature contains many examples of toolsets that have been developed to support 
large-scale studies. Academic studies have included demonstrations of optimization, sensitivity 
analysis, uncertainty quantification, and control algorithms (Caldas & Norford 2003; Barker & 
Horowitz 2004; Hale & Long 2010, Hopfe 2009; Keeney & Braun 1996; Ren & Wright 1997; 
Wetter & Wright, 2004). Researchers and analysts also run large numbers of simulations to 
complete tasks such as validating standards, assessing technical potential, and making 
prescriptive design recommendations (Bonnema et al. 2010; Griffith et al. 2007; Jarnagin et al. 
2006; Thornton et al. 2011). The toolsets to support these studies are typically homegrown 
software platforms (some of which become more widely available over time) that manage the 
processes of determining which design alternatives to evaluate, managing calls to the energy 
simulation program, and aggregating results for analysis.  

  A few tools are available for end users without the resources to develop their own 
custom analysis toolset. EnergyPlus has native parametric capabilities (DOE 2011). GenOpt 
provides a library of optimization algorithms that can be coupled to particular values in a text 
input file such as EnergyPlus input data file (IDF) (Wetter 2011). BEopt is available for 
optimizing the design of residential buildings against energy and economic metrics 
simultaneously (NREL 2012). Opt-E-Plus is an NREL internal tool that has features similar to 
BEopt but is customized for commercial buildings (Ellis et al. 2006). Each of these tools is 
useful to its target audience, but none has the full ability to easily define new building design 
parameters; offer a large selection of algorithms and support the addition of new ones; manage 
large numbers of runs and all the data generated from them, possibly across multiple systems and 
system types (including clusters); and make it easy to extract and evaluate the final results. Based 
on prior experience with Opt-E-Plus, NREL’s commercial buildings group is developing an 
analysis framework within OpenStudio to address these shortcomings.  

OpenStudio is a software development kit (SDK) and a collection of end-user 
applications for energy modeling and higher-level functionalities (Ball et al. 2012). Developed 
largely with public funds, OpenStudio is cross-platform software (Windows, Mac, and Linux) 
that is available for free under a lesser GNU public license. In this paper, we describe 
OpenStudio’s current analysis framework, which meets the requirements for a full-featured 
analysis package given above. OpenStudio’s functionalities are packaged into reusable modules 
accessible through C++, Ruby, and C# (support of more languages is technically possible). This 
allows the functionality to be used by developers, working in their programming language of 
choice, to complete particular projects. For example, the Policy Analysis Tool (PAT), described 
later in this paper, is a proof-of-concept application using the analysis framework. Extending 
PAT’s graphical user interface (GUI) to match and exceed the features of Opt-E-Plus is planned 
as future work. However, one lesson learned from the development and support of Opt-E-Plus is 
that no GUI can meet the needs of all users. For this reason, we expect many users to prefer 
accessing the analysis framework through Ruby scripting, as that will always be a more flexible, 
powerful, and repeatable way to access the functionality. We provide an example in which 
custom Ruby scripts based on the analysis framework are being used to evaluate EEMs to be 
included in the U.S. Department of Energy’s Advanced Energy Retrofit Guide for Hospitals. 

 
Software Architecture 

 
The core functionality of OpenStudio is organized into a number of related modules as 

depicted in Figure 1. Each module is written in C++ and made available to Ruby and C# using 
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the Simplified Wrapper and Interface Generator (Beazley et al. 2009). The intended clients for 
this SDK are traditional computer applications (e.g., OpenStudio Application, ResultsViewer, 
RunManager, and PolicyAnalysisTool), plug-in computer applications (e.g., OpenStudio plug-in 
for Google SketchUp), Web applications (via Ruby on Rails), and user-written and -maintained 
Ruby scripts.  

 
Figure 1. OpenStudio Architecture 

 

Credit: Marjorie Schott/NREL 
 

The fundamental building block of the SDK is the Building Modeler, which is an object-
oriented representation of a single building energy model. As EnergyPlus is the primary 
simulation engine targeted by OpenStudio, the underlying data model was initially based on 
EnergyPlus input data dictionary (IDD). However, this model has been rapidly evolving to 
improve the modeling experience and support simulation engines for different, but related, 
domains. For instance, daylight simulation with Radiance is supported by the ability to model 
individual luminaires and more than two daylight sensors per thermal zone, features that 
EnergyPlus does not support but are often used in Radiance models. In addition to expanding the 
data model, the OpenStudio API provides methods for inspecting and perturbing building energy 
models at higher levels of abstraction than single data fields. These methods include returning all 
surfaces that reference a given construction, setting window to wall ratio, and adding template 
HVAC systems. The OpenStudio SketchUp Plug-In and OpenStudio Application provide 
examples of using such methods, as do some of the Ruby scripts that ship with OpenStudio. 
Other modules build upon the Building Modeler; we next describe the modules that comprise the 
OpenStudio analysis framework. 

12-122©2012 ACEEE Summer Study on Energy Efficiency in Buildings



Analysis Framework 
 
OpenStudio users can build custom analysis tools on top of the OpenStudio analysis 

framework, which is implemented across several of the modules shown in Figure 1. Groups of 
related models are defined using the Building Analyzer, which contains the notions of a problem 
definition, an algorithm, and an analysis. Because even the work of constructing a perturbed 
model from a particular seed file can take a significant amount of time, the Building Analyzer 
block relies on the Analysis Manager to set up and schedule (via the Run Manager) the actual 
work of creating and simulating models. As they are created, results are written to the Project 
Database, using the Project Manager functional block, to enable algorithm restart, and data 
queries for retrieving high-level results and individual models. The process of conducting a 
large-scale simulation study can be decomposed into five steps. Each step is described in detail 
below, in relation to OpenStudio’s current capabilities. 

 
Step 1: Define the Seed Model or Seed Models 

 
The first step in using the analysis framework for a project is to define the seed model or 

seed models. The software supports the use of both OpenStudio model (OSM) and EnergyPlus 
IDF as the seed model format. New OSMs can be constructed using the SketchUp Plug-In and 
the OpenStudio Application in concert. OSMs can also be constructed by importing an existing 
IDF as a starting point. Supporting data needed to create a new model, such as standards 
compliant constructions and schedules, is available from the Building Component Library (BCL) 
(Fleming, Long & Swindler 2012). 
 

Figure 2. Example Building Energy Design Problem

 
 

Credit: Marjorie Schott/NREL 
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Step 2: Define the Analysis Problem 
 
After defining the seed models, the user defines the problem to be analyzed. Variables 

and the range of values they may take, either continuous or discrete, are defined. Result functions 
of interest are also specified, especially if the modeler intends to run an optimization algorithm 
that requires objective functions. Explicit constraints are not yet supported, but would be a 
desirable addition to the framework. Finally, a simulation workflow, including pre- and post-
processing steps, is specified. We typically define a post-process step that extracts high-level 
results in XML format for consumption by the Analysis Manager and Project Manager. An 
example problem definition is depicted in Figure 2. In this figure, each axis of the parameter 
space is a variable that may be set to a particular value in the context of this analysis. This figure 
also depicts a “report card” showing the objective and constraint functions that will be evaluated 
for each building. 

An example simulation workflow is shown in Figure 3. This figure depicts an example 
workflow that the Run Manager might use to perturb an input seed model (Placeholder et al.), 
translate the model into IDF format (ModelToIdf), perform an energy simulation (EnergyPlus), 
and extract results (Post Process). The workflow consists of a series of jobs to be executed. Some 
jobs correspond to traditional simulation steps, such as running the EnergyPlus simulation or 
performing post-processing. However, in OpenStudio this workflow also perturbs the seed model 
by setting each variable value in sequence, thereby producing a distinct design alternative. Each 
variable is represented by one placeholder job whose value is set to a distinct number/design 
alternative for each candidate design at runtime. The values are set through the substitution of a 
real (non-placeholder) job that performs the actual work of changing the model’s input data. The 
order of the placeholder jobs is fixed, equal to the order of the variables set in the problem 
definition. 

 
Figure 3. Example Building Energy Design Problem 

 
 

The current OpenStudio analysis framework includes three types of perturbations. The 
first type is a null perturbation that does not change the input model at all. The second type is a 
ruleset perturbation, which may only be applied to an OpenStudio model. A ruleset consists of an 

Credit: Marjorie Schott/NREL
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ordered list of rules. A rule is an ordered list of filters followed by an ordered list of actions. 
Each rule searches the entire model, filtering objects based on object type, attribute value, or 
relationship. Only objects that pass all the filters have the actions, which set attribute values and 
relationships, applied to them. In the analysis framework, fully formed rulesets can be used to 
define discrete perturbations on a building model. Single rules that set one attribute of type 
double (a real variable) can be used to define a continuum of possible perturbations. An example 
ruleset containing one rule that changes the construction type of all the exterior walls is: 

 
Rule 1 Filter 1 If object type is surface, and 

Filter 2    if surface type is wall, and 
Filter 3    if outside boundary condition is outdoors, 
Action 1 Then set construction to construction to myMassWall 

 
The final type of perturbation available is the Ruby script. This type of perturbation may be 
applied to either OpenStudio models or EnergyPlus IDFs and has access to the entire OpenStudio 
SDK. This method of representing EEMs is therefore very flexible. For example, our colleagues 
and we have written scripts that: 

 
 Apply overhangs to all exterior windows. 
 Change the window to wall ratio of a façade, with a user-specified floor-to-sill height. 
 Apply a packaged variable air volume system with parallel fan powered terminals, direct 

exchange cooling, and electric resistance heating to each story of a building model. 
 Swap wall, roof, and window constructions directly in IDF.  
 Change HVAC equipment efficiencies directly in IDF. 
 Import objects stored in an EnergyPlus IDF or an input macro file (IMF) section. 

 
The scripts can be written free form, or they can be written following the OpenStudio 

measures interface. The measures interface partitions the script into one part that defines 
arguments and another part that runs on a model or a workspace (an IDF), so that the arguments 
can be displayed interactively in our modeling applications. 

Step 3: Select an Algorithm 
 
In the analysis framework, users can explicitly specify combinations of variable values 

themselves, or they can use algorithms to automatically generate combinations of variable 
values. OpenStudio has custom code for performing full factorial design of experiments 
(meshes) on discrete variables. It also includes a version of the sequential search algorithm for 
optimizing discrete problems with two objective functions from BEopt and Opt-E-Plus (Ellis et 
al. 2006; NREL 2012). We are currently working to give users access to many of the algorithms 
available in DAKOTA, an algorithm library developed by Sandia National Laboratories (Adams 
et al. 2009). 
 
Step 4: Run the Analysis 

 
An analysis is formed by grouping a seed model, a problem, and an algorithm into one 

entity. Once that is done, user-specified sets of variable values can be used to construct data 

12-125©2012 ACEEE Summer Study on Energy Efficiency in Buildings



points (alternative design specifications) and add them to the analysis. The Analysis Manager is 
then instantiated and used to run the analysis. Any user-specified points are queued first. After 
that, the Analysis Manager interacts with the algorithm to construct and run additional data 
points. The Analysis Manager has explicit dependencies on the Project Manager, which it uses to 
store the generated data in a Project Database, and the Run Manager, which handles the 
scheduling of individual jobs, possibly on a local machine and a separate cluster resource 
simultaneously. To the end user, using the Analysis Manager to run an analysis with a DAKOTA 
algorithm looks very similar to using a native OpenStudio algorithm. On the back end, the 
Analysis Manager, in concert with the Run Manager and the Building Analyzer, handles all the 
communications with DAKOTA, which at this time happens through files saved to disk.  

 
Step 5: Evaluate the Analysis 

 
After an analysis has been run, the Project Database can be used to perform queries on 

the results data. In the course of the run, each data point is populated with its last input file 
(which represents the fully instantiated design alternative), its EnergyPlus SQLite output file, and 
its report XML file. The last input file and SQLite output file can be opened using OpenStudio 
and browsed in detail. More often, the high-level values in the XML report file are of interest. 
These values are saved directly to the project database for fast access. These values are often 
programmatically retrieved from the project database and assembled into tables and plots for 
human inspection. 

 
Figure 3. Policy Analysis Tool Rules Tab 
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Case Study I: Policy Analysis Tool 
 
The Policy Analysis Tool is a proof-of-concept application that uses the analysis 

framework for energy standards evaluation and validation. The tabs on the left side guide the 
user through the steps of performing the analysis. On the first two tabs, the user selects a climate 
zone and a building type. The third tab lets users choose candidate roof constructions, exterior 
wall constructions, and LPDs to apply to the baseline model. At runtime, those perturbations are 
implemented using the rulesets described above; the roof and wall constructions are applied 
using a rule very much like Rule 1. A full factorial design of experiments algorithm is always 
applied; because the computational requirements of running a full mesh are prohibitive, the 
Policy Analysis Tool ensures that users do not swamp their systems by limiting the total number 
of possible combinations to 16. 

The Policy Analysis Tool has an additional standards capability that only applies to 
California climate zones. For analyses in California climate zones, the user can modify a ruleset 
(consisting of rules made of filters and a pass/fail action) that partially implements the 
prescriptive path of CEC Title 24 2008 using the graphical interface shown in Figure 3. Because 
many rules in the standard will not apply to a given building, the CLIPS expert system library 
(Riley 2011) is used to determine which rules to check and in which order. 

 
Figure 4. Policy Analysis Tool Results Tab 

 
 
The results tab of the application is shown in Figure 4. Initially, this tab is largely blank. 

When the user clicks the run button, an analysis is created on the back end. The seed model is the 
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selected baseline model. The problem has three variables, one for each type of perturbation: roof 
construction, exterior wall construction, and LPD. The variables are all discrete, and have as 
many perturbations as the user selected. The simulation workflow applies all the perturbations, 
translates the model to EnergyPlus IDF format, runs an EnergyPlus simulation, applies a 
postprocessing step to pull high-level results into the project database, and, if applicable, applies 
the standards ruleset to determine whether the model passes. As simulations are completed, high-
level results for each point are shown using a perturbation summary table (lower right corner of 
Figure 4), a scatter plot of economic objective versus energy objective (top), and a bar chart 
showing the breakdown of energy use intensity by end use (lower left). The scatter plot shows all 
data points simultaneously; the focus of the table and the bar chart changes based on user 
selection. 

 
Case Study II: Advanced Energy Retrofit Guide for Hospitals 

 
The Advanced Energy Retrofit Guide for Hospitals project analyzes 15 EEMs commonly 

applied to hospitals. Its goal is to provide an optimum package of EEMs in terms of net present 
value (NPV) and energy cost savings. The problem can thus be stated as a bi-objective design 
optimization problem seeking to maximize energy cost savings and NPV. 

Hospital buildings have complex HVAC systems. At the beginning of this project, the 
OpenStudio model was not yet full featured enough to support this building type. The analysis 
was therefore built using EnergyPlus IDFs as the seed models. Each EEM was defined in an 
individual Ruby script that opens an input IDF file, affects the perturbation, and saves the 
perturbed model with a different file name.  

The Ruby code to load the input IDF is shown below. First, a path to the file is created 
using the new method of the OpenStudio::Path object. Second, the IDD file type is specified 
using the to_IddFileType method on the string “EnergyPlus”. Finally, the file is loaded into 
memory with OpenStudio::Workspace.load. The OpenStudio Workspace is an in-memory 
instantiation of an IDF model where the name references are automatically maintained by 
treating the reference as a bidirectional pointer, rather than as a string. 

  
myIdfInputpathFile = OpenStudio::Path.new('in.idf')  
myIdfFileType = “EnergyPlus”.to_IddFileType 
myWorkspace = OpenStudio::Workspace.load(myIdfInputpathFile,myIdfFileType) 
if myWorkspace.empty?   
 raise "Idf not found or the file is malformed." 
else 
 myWorkspace = myWorkspace.get 
end 
 

After the IDF file is loaded into a workspace, the script goes on to perturb the model. In 
this project, each EEM could be implemented using two types of modifications—adding a new 
EnergyPlus object, or changing the value of a field in an existing object. An example of adding 
an EnergyPlus Branch object follows. 
 

iddObjectType_Branch = OpenStudio::IddObjectType.new("Branch") 
idfObject_Branch = OpenStudio::IdfObject.new(iddObjectType_Branch) 
workspaceObject_BranchCondenserLoop = myWorkspace.addObject(idfObject_Branch).get 
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Object addition involves defining an IDD object type, creating the IDF object, and adding 
the IDF object to the workspace. Modifying input field values involves digging a little deeper to 
find the desired object and to set the field value: 

 
iddObjectType_BranchList = OpenStudio::IddObjectType.new("BranchList") 
# retrieve all objects of type BranchList 
workspaceObject_BranchList = myWorkspace.getObjectsByType(iddObjectType_BranchList) 
workspaceObject_BranchList = myWorkspace.sort(workspaceObject_BranchList) 
 
for i in 0..(workspaceObject_BranchList.size-1) 
   # get the branch list name 
   objectNameField = workspaceObject_BranchList[i].getString(0).get 
   # if the name is not “TowerWaterSys Demand Branches” 
   if  objectNameField =~ /^TowerWaterSys Demand Branches/  
     index = workspaceObject_BranchList[i].numFields - 1 
     # get the current outlet branch 
     currentVal_OutletBranch = workspaceObject_BranchList[i].getString(index).get 
     # add an economizer branch to the condenser 
     workspaceObject_BranchList[i].setString(index,”Economizer condenser Branch”) 
     # keep the current outlet branch by placing it in the next position 
     workspaceObject_BranchList[i].setString(index+1, currentVal_OutletBranch) 
   end 
end 

 
Finally, the perturbed IDF file is saved to disk so the run manager can pick it up and hand 

it to the next perturbation script or to EnergyPlus: 
 
myIdfOutputFilePath = OpenStudio::Path.new(measureCode + "out.idf").to_s 
myWorkspace.save(myIdfOutputFilePath,true) 
 

This project also has a custom Ruby postprocessing script for calculating energy cost 
savings and NPV relative to the baseline (seed) model. At this time, special points (such as the 
baseline) are not automatically available to postprocesses for calculating such output values. 
Thus, to enable the direct use of energy cost savings and NPV as objective functions, the 
baseline model was pre-run, with relevant results assembled into a comma separated value 
(CSV) format. The postprocess then made direct use of this CSV file when aggregating results 
for each new data point. 

The analysis was set up to run using the Sequential Search optimization algorithm 
available in OpenStudio. As stated earlier, this algorithm works to solve biobjective optimization 
problems over discrete variables. Methodologically, it is a heuristic algorithm that greedily traces 
out the Pareto tradeoff curve in a prespecified direction. In this case, it would start from the 
baseline point, constantly moving in the direction of increasing energy cost savings, always 
choosing the point with the highest NPV for the current energy cost savings level.  

 
Extending the Framework 

 
OpenStudio is an open source project. In addition to allowing users to reuse functionality 

from the SDK, this also allows users to submit code improvements back to the main project. 
These improvements could include new search algorithms, improvements in speed or 
performance, Run Manager improvements to run on new types of distributed systems, or many 
other new features. Another key contribution users can make is to share the perturbations they 
have used in their analysis, either in ruleset or ruby script form, through the BCL. As the features 
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of the analysis framework grow and the library of available perturbations is built up, new users 
will find it easier to create and perform their own building energy analyses. 
 
Conclusions and Future Work 

 
The analysis functionality contained in the OpenStudio SDK gives software developers 

the ability to quickly create tools for conducting custom, large scale building energy simulation 
studies. The SDK is under active development, but is mature enough to use today. Seed models 
may be created using the OpenStudio modeling applications. Designs can be parameterized in 
several ways, using discrete and continuous variables, written as rulesets or free-form scripts. A 
library of algorithms is provided, and the details of data and run management are taken care of 
automatically. The functionality can be exposed through graphical user interfaces built on the 
SDK, or it can be used directly by advanced users writing Ruby scripts. Graphical applications, 
such as the Policy Analysis Tool, can reach wider audiences, but will never be able to meet the 
needs of every user. Advanced users can implement their own analysis tools using custom Ruby 
scripts. Because these scripts use the OpenStudio SDK, less time is spent developing code than 
in a fully homegrown software solution. Because the scripts can be rerun at any time, the entire 
analysis highly repeatable. 

Future planned work includes adding robust standards and costing functionalities, 
expanding the types of problems that can be defined in the framework, adding algorithms both 
natively and from DAKOTA, and enabling users to share reusable pieces of their work 
(especially building components, rulesets, and measure scripts) through the BCL. This will 
enable the community to share and refine EEMs for general use. Eventually, we hope that a 
graphical user interface built on the OpenStudio analysis framework will allow the general 
public to perform automated building energy optimization in a simple and intuitive way. 
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