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ABSTRACT 
 

Connected thermostats (CTs) manage HVAC systems in over four million homes. Widely 
varying strategies are used by these thermostats to reduce HVAC energy use. Thermostat 
vendors claim savings of up to 20%; however, there is no accepted procedure to evaluate the 
effectiveness of these strategies. Presently, consumers (and utilities) have no way to identify the 
most effective CT products. We developed a method to quantify HVAC energy savings from a 
CT and assign a savings metric to CT products based on the method. The method collects indoor 
temperature and HVAC run time data from thermostats, plus publicly available local weather 
data. Temperature data is then regressed against HVAC run time to develop a unique HVAC-
thermal model for each home. CT savings are expressed as percentage HVAC run time reduction 
from that with an assumed constant temperature baseline. To assign a metric value to a product 
(hardware plus service), savings from a large number of homes using the product are aggregated 
via a specific procedure. The method is being tested on large groups of thermostats from several 
vendors. Many of the strengths and weaknesses of this approach have been identified and will be 
discussed, along with anticipated future improvement of the method. 

 
Introduction and Background 

 
The residential thermostat is arguably the most important device controlling home energy 

use. Together, residential thermostats control nearly 10% of national energy use. (Peffer et al. 
2011) A correctly programmed thermostat can easily reduce a home’s heating and cooling 
energy over 20% compared to constant temperatures and 14% for the average home. (Moon and 
Han 2011; Sanchez et al. 2008) For these reasons, the Environmental Protection Agency (EPA) 
became interested in ENERGY STAR™ labeling of advanced thermostats. At first, EPA focused 
on programmable thermostats, establishing specifications that required certain features and 
performance. In addition, the specification required that the thermostats be pre-programmed with 
a schedule of temperatures that were likely to save heating and cooling energy. ENERGY STAR 
labeling almost certainly accelerated the widespread adoption of higher-quality, programmable 
thermostats. 

Over time, however, it became clear that the energy-saving potential of programmable 
thermostats was not being realized. (Nevius and Pigg 2000)  Field research found that consumers 
disabled many of the energy-saving features, and on the whole, the presence of a device that 
could enable savings was poorly correlated with actual energy bill reductions. As a result, in 
2009, EPA terminated ENERGY STAR labeling for thermostats until it could develop a means 
of ensuring higher utilization of the energy-saving features. EPA explored several strategies to 
encourage higher consumer use of energy-saving features, but ultimately none of these 
approaches proved feasible. 

Around 2012, several thermostat manufacturers began offering devices with Internet 
connectivity and other means of communicating with devices beyond the furnace and AC, such 
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as smart phones and home energy management systems. The Internet connection enabled 
entirely new approaches to controlling home temperatures. First, residents could remotely 
control their thermostats through a web portal and their mobile phones. Second, thermostat 
manufacturers could track and help manage temperatures through the Internet connection. This 
feature opened up many new energy-saving opportunities that skirted problems with 
conventional thermostats. It also changed the thermostat from a relatively boring device on the 
wall to one of the first residential applications of the Internet of Things (connected devices), Big 
Data (analysis of large amounts of data to yield new insights) and Software as a Service (users 
interact with software not as a single purchase but as a service hosted elsewhere which they 
interact with as needed). 

The market grew rapidly so that by 2013, roughly two million Internet-connected 
thermostat were sold, increasing to four million in 2015; a growth rate of roughly 25% per year 
(Tweed 2015). This allowed EPA to focus its program on connected thermostats (CTs). These 
products allow visibility into a key gap in previous efforts to label thermostats: how they are 
used in the home. The thermostat service provider generally has access to data that is indicative 
of how the thermostat is being used in the homes of their subscribers.  

Thermostats have never easily fit within EPA’s conventional labeling framework. A 
typical ENERGY STAR product specification begins with the assumption that a product’s 
energy efficiency can be measured with a test procedure performed in a test laboratory. 
Typically, the products with an energy efficiency in the top 25% of the category will earn the 
label. This framework works well for furnaces and air conditioners but not the device that 
controls them. To be sure, some performance characteristics of the thermostat can be tested, such 
as temperature sensitivity, but these don’t significantly affect the fundamental heating and 
cooling operation. The energy savings due to CTs are even more difficult to assess and no energy 
test procedures exist today.   

This paper describes EPA’s progress towards developing an ENERGY STAR 
specification for CTs.  It focuses on the technical problem of assessing the ability of CTs to save 
energy.  

 
Goals of the Metric and Program 

Every ENERGY STAR program relies on a “metric” to express energy performance or 
savings. Metrics are typically expressed in kWh/year, energy factor (EF), EER, or similar, and 
are based on a recognized energy test procedure. For CTs, however, no test procedure exists and 
a traditional approach, e.g., laboratory test, is not feasible. A metric must nevertheless adhere to 
Energy Star’s principles: namely, it must be technology neutral, fair and transparent, able to 
assure consumers of an acceptable payback time, and the metric must be obtained through a 
procedure that is fast and reasonably easy to determine in order to keep pace with changing 
technologies. Ideally, it would allow testing of a broad range of thermostat products, including 
the variety of unique combinations of hardware, software, and services. On one end of the 
spectrum, some businesses sell little more than the Internet-connected thermostats (pure 
hardware). On the other end of the spectrum, businesses sell only the web services that a 
consumer needs to manage the thermostat that he or she obtains elsewhere. The product to test, 
then, should be understood as a combination of hardware, software, and service.  
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How Connected Thermostats Save Energy 
 
Before developing a metric, it is also important to understand how CTs can reduce 

heating and cooling energy consumption. In its simplest form, a CT saves energy by reducing 
HVAC run time compared to what would have occurred with a conventional1 thermostat. The 
primary means for a CT to do this is by minimizing the inside-outside temperature difference. In 
the winter, this means lowering the average inside temperature and, in the summer, raising it. 
The plots below demonstrate this savings in a representative way.  

 

Figure 1: A conceptual illustration of how connected thermostats 
(CTs) save energy in heating season and cooling season, by 
influencing the daily average indoor temperature.  

 
However, the CT must manage temperatures such that occupants do not experience 

thermal discomfort. Vendors often employ cloud-based algorithms to achieve these goals. 
Techniques employed by a CTs during the heating season include: 

 
• allowing temperatures to begin floating downwards slightly before programmed time 
• optimizing morning recovery from setback 
• optimizing HVAC control for weather conditions  
• lowering temperatures when occupants are home and/or when away2 
• minimizing use of electric resistance auxiliary heating for homes with heat pumps 

 

                                                 
1 Being interested in aggregated savings, we use “conventional thermostat” to refer to the mix of manual 

and programmable thermostats that are used in US households.   
2 Some CTs employ sensors to detect vacancy or occupancy (depending on the system). This data stream 

was not used in the analysis because not all products employed the sensors. Some CTs also capture humidity data; 
this data stream was also not used in the analyses. 
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Similar strategies are employed during the cooling season. Thus, the primary means of 
saving energy is by closing the gap between indoor and outdoor temperatures. A metric must 
capture the CT’s proficiency in managing temperatures to achieve energy savings.  

 
Data Available to Determine a Metric 
 

The obvious source of performance data are from the utility electricity and gas meters. 
Unfortunately, CT vendors cannot reliably obtain utility data and utilities cannot reliably obtain 
CT data. Third-party verification entities have great difficulty obtaining both data sets. In the 
ENERGY STAR program, EPA works with the providers of products - in this case, the providers 
of CTs. The data common to all CTs and available to CT service providers are: 

 
• thermostat set points (every 30 minutes or less) 
• indoor temperatures (every 30 minutes or less) 
• run-time of controlled HVAC equipment 
• if the unit is a heat pump 
• geographic location  
• outside temperatures from nearby weather stations 

 
Other data collected by some CTs include: occupancy, humidity, multiple inside 

temperatures (and set points), and additional HVAC modes. None of these were included in our 
analyses. A fragment of a typical data stream is shown in Figure 2, illustrating hourly 
temperatures, set points, and furnace run times. The daily operating patterns are evident. There 
are also frequent divergences between the set points and the inside temperatures (in both 
directions), presumably caused by appliance gains, solar gain, and thermal mass. 

 

 
Figure 2: 10 days of the data stream from week in January for a connected 
thermostat located in Central California, illustrating the density and 
variety of data.  
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It is also important to understand the data that are not widely available, including 

thermostat settings, indoor temperatures and run times prior to CT installation; electricity and gas 
consumption both prior and subsequent to CT installation; or the capacity of the heating and 
cooling systems and other technical features of the system, beyond what can be determined by 
the thermostat wiring & settings. 

Many techniques of extracting building thermal performance metrics from energy data 
have been developed. The best known is perhaps PRISM (Fels and Goldberg 1986), which 
compares metered energy consumption to outdoor daily average temperatures in order to derive 
thermal parameters. Field studies beginning with PRISM in the 1970s have found a roughly 
linear relationship between a home’s heating or cooling energy use and ΔT, the differential 
between inside and outside temperatures (Fels 1986). The linear relationship includes a 
temperature offset (“free heat”) expressing the tendency of the home to warm by several degrees 
even in the absence of active heating. This rise is driven by body heat, heat from appliances, and 
solar gain. Run time for single-speed HVAC exhibits a similar linear relationship to ΔT. The 
goal of modeling each thermostat is to derive the unique linear relationship for each home.  

The CT data sets are both richer and poorer than those required by PRISM. The CT data 
sets include set points and room temperatures at least every hour. In contrast, PRISM and similar 
models typically assume constant inside temperatures or some sort of variable degree-day base. 
In the case of CTs, the variation of inside temperatures arising from hour-by-hour management 
of set points are in fact the independent variable. PRISM uses metered energy data as an input, 
which is not generally available to CT providers. At hourly data rates, thermal mass effects and 
random fluctuations are readily apparent, while they are smoothed out or invisible in PRISM 
analyses. Finally, PRISM treats energy use for the whole home and must include a term to 
account for energy consumption not dependent on outside temperature. No equivalent use term is 
needed for a CT since all HVAC run time affects inside temperature. Furthermore, PRISM-type 
analyses cannot always distinguish between heating and cooling energy; with CTs the run times 
for heating and cooling are tracked independently. We concluded that PRISM (or its successors) 
could not be easily adapted for the derivation of a CT performance metric.   

 
Choosing a Baseline 
 

The CT performance metric must be directly related to energy savings. However, any 
estimate of energy savings first requires identification of a baseline. In broad terms, the baseline 
is the home with a conventional thermostat instead of the CT. Since these thermostats do not 
track temperature data, it is difficult to measure the baseline directly. In practice, several ways of 
estimating this baseline are possible, depending on data availability and program goals. Possible 
baselines include: 

 
• A constant indoor temperature or constant thermostat set point, or a schedule of 

thermostat set points, determined without reference to the particular home 
• A run time derived from population energy use data, such as DOE technical support 

documents or EIA data, without reference to temperature choices 
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• Data from a “test period” when the CT’s features are switched off and on (to create an 
A/B test)3 

• Analysis of CT data to infer comfort preferences that were likely relevant both before and 
after the CT was installed 
 
Each of these baselines is a compromise between simplicity and realism. A constant 

temperature or a constant setpoint is simple to implement; however, field studies have illustrated 
variance in comfort preferences between households and between regions. In contrast; 
individual, per-home baselines derived from comfort preferences captured by CTs may more 
accurately represent the variance of baseline conditions across households. The performance 
metrics described below rely on different baselines and have their respective strengths and 
weaknesses.  

 

 

Figure 3: A conceptual illustration of the selection of 90th percentile set 
temperature in heating season as a baseline indoor temperature, and how it 
would compare to a years’ worth of indoor temperatures.  

EPA explored one particular baseline in detail, assuming persistent use of comfort 
temperatures as the baseline condition. These individual, per-home comfort temperatures are 
extracted from the CT set point history based on the method of Urban and Roth (2014): 

                                                 
3 A baseline derived from periods when the CT features are switched off is analytically attractive but 

introduces numerous technical and behavioral interactions. For example, most thermostats have algorithms that 
“learn” the occupants’ behavior, so the weeks subsequent to a baseline period would mostly reflect the transitional 
period while the algorithms seek to re-learn occupant behavior and re-optimize operating schedules, rather than the 
CT’s ultimate performance. 

2-6 ©2016 ACEEE Summer Study on Energy Efficiency in Buildings



 

Heating Comfort Temperature - During the core heating season (days with > 1 
hour of heating run time), the 90th percentile of the set point history is used as the 
preferred heating comfort temperature for the home.  

Cooling Comfort Temperature - Similarly, the 10th percentile of the setpoint 
history in the core cooling season is used as the preferred cooling comfort temperature.  

See Figure 3 for a graphical explanation of these points. 
 
Performance Metrics for Connected Thermostats 

 Based on the constraints outlined above, two approaches to evaluating the performance of 
CTs and calculating a metric were identified: 

1. Savings Degree-Hours  
2. HVAC run time 

These two approaches are introduced below and their merits discussed. 
 

The Savings Degree-Hours (SDH) Metric 
 

The “Savings Degree-Hours” metric seeks to capture the extent to which thermostat 
management maximizes the difference between the measured indoor temperature and an 
arbitrary reference temperature. It compares the history of indoor temperatures to the reference 
temperature, multiplying the temperature difference by the number of hours the difference exists, 
then summing: ܵܪܦ =  ൫ ܶ − ܶ௦൯	௧	௨  

 
Where ܶ =  ݁ݎݑݐܽݎ݁݉݁ݐ	݁ܿ݊݁ݎ݂݁݁ݎ
  ܶ௦ =  ݁ݎݑݐܽݎ݁݉݁ݐ	ݎ݀݊݅	݀݁ݒݎ݁ݏܾ
 
The primary advantage of a SDH metric is simplicity. It seeks to rank products by the 

numerical quantity of accumulated SDHs over a period of time, as higher SDHs equate to 
less energy use. This strength, however, is also its largest weakness: there is no obvious way 
to assess the magnitude of energy or consumer bill savings. 4  

 
HVAC Run Time Metric 
 

This metric seeks to measure the reduction in equipment run time resulting from better 
thermostat management. It compares the actual run time of the controlled HVAC equipment to a 
baseline run time, expressing the savings as % run time reduction.   

                                                 
4 There are situations in which savings from improved control of HVAC equipment are not captured by 

SDH metric. These include situations where the vendor reduces the amount of auxiliary heat (e.g. avoiding the use 
of electric resistance heat as backup to a heat pump) or from prompting residents to open windows and shut off the 
AC when it is cool outside.  
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 ܴܵ	 = ሺܴ௦ − ܴ௦ሻ/ܴ௦	ݔ	100%	 
 
Where ܴ௦ =  ܶܥ	ݐݑℎݐ݅ݓ	݀݁ݎݎݑܿܿ	݁ݒℎܽ	݈݀ݑݓ	ݐℎܽݐ	݁݉݅ݐ	݊ݑݎ
  ܴ௦ =  ܶܥ	ℎݐ݅ݓ	݁݉݅ݐ	݊ݑݎ	݀݁ݒݎ݁ݏܾ
  ܴܵ =  ܶܥ	ℎ݁ݐ	ݐ	݁ݑ݀	݁݉݅ݐ	݊ݑݎ	݊݅	݊݅ݐܿݑ݀݁ݎ	%
 

The primary advantage of the HVAC run time metric is that it is closely tied to energy 
and cost savings – a given percent reduction in run time is clearly related to percent HVAC 
energy use reduction (at least for single speed equipment).5 In addition, the metric is potentially 
capable of capturing savings from a variety of strategies, not just from more energy conserving 
set points. However, estimating the baseline run time (in the absence of the connected 
thermostat) is not straightforward.  

 
The hybrid temperature-run time metric 

 
Based on stakeholder and expert input, EPA selected a hybrid run time approach. The 

ultimate goal of the metric is to characterize the energy performance of the entire US deployment 
of a CT model. Thus, the metric must capture both the energy performance of individual 
thermostats and the mean performance of a representative sample of the entire US deployed 
population. As with previous methods, a metric is first calculated for an individual thermostat, 
then these results are aggregated over a large sample of homes.  

 
The Hybrid Metric for a Single Home 
 

Generating savings metric scores for a particular home is a three step process: 
1. Develop the Home’s Thermal/HVAC Model - construct a model of the relationship 

between HVAC run time, outside temperature, and temperature choices in the home;  
2. Calculate the Baseline Run Times - use that model to calculate baseline heating and 

cooling run times; i.e. what run times would have been under baseline temperature 
conditions; 

3. Calculate Savings - output savings as % run time reduction of actual vs modeled.  
 

Develop the home’s thermal/HVAC model.  We explored in detail a model where varying 
inside temperature explains energy savings. The calculation summarizes data daily, as this 
seemed to be the most robust. The model is similar to previous models, using a simple linear 
relationship with a balance temperature: 

 ܴ ܶ = ൫ሺ∆ܶ − ߬ሻ/ߙ൯ା ܴ ܶ = ൫ሺ∆ܶ − ߬ሻ/ߙ൯ା 

 
Where ሺ ሻା indicates that the term is zero if its value would be negative 

                                                 
5 Special treatment will be required for variable capacity equipment because run time does not directly 

correlate with energy consumption.  
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߬ = the reference temperature difference of the home for heating, which is 
maintained without use of heating equipment  ߬ = the reference temperature difference of the home for cooling , which is 
maintained without use of cooling equipment ∆T = indoor minus outdoor temperature = ܶ − ܶ௨௧ ܶ = indoor temperature reported by the CT  ܶ௨௧ = outdoor temperature reported by the closest NOAA weather station  ߙ = the responsiveness of the home to heating equipment run time ߙ = the responsiveness of the home to cooling equipment run time 

 
Note that ∆ܶ as defined will be negative for most of the cooling season. ߬ is the reference 

ΔT which would result in the absence of running the thermostatically controlled heating and 
cooling equipment, reflecting “free heat” from solar gain and from activities and appliances in 
the home. Because of its physical cause, ߬ is expected to typically fall in the range of 5 to 15°F. 
It will be different for heating and for cooling.  

  
Figure 4: A conceptual illustration of how this method would be used with field data for the heating 
season: A linear regression of ∆ܶ vs. ܴܶ using only those days that have more than 60 minutes of 
heating equipment run time, and no cooling equipment run time. 

 
In order to calculate the fit, the equation is reversed and a straightforward linear 

regression of ∆ܶ as a function of ܴܶ is performed. The regression is limited to “core 
cooling/heating days” by excluding points with less than one hour of HVAC run time per day, or 
with both heating and cooling run time.  

 ∆ܶ = ߙ ∙ ܴܶ  ߬ (core cooling days) ∆ܶ = ߙ ∙ ܴܶ  ߬ (core heating days) 
 

Calculate baseline run time. Baseline run times are calculated by first calculating ∆ܶ in the 
baseline condition, then calculating baseline run times from that. Run times will be longer to the 
extent that ∆ܶ is larger in the baseline condition.  

 ∆ܶ௦, = ܶ௦, − ܶ௨௧ ∆ܶ௦, = ܶ௦, − ܶ௨௧ 
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௦ܴܶܪ = ቀሺ∆ܶ௦, − ߬ሻ/ߙቁା ܴܶܥ௦ = ቀሺ∆ܶ௦, − ߬ሻ/ߙቁା 

Where ܶ௦, is the indoor temperature in the heating season baseline condition  ܶ௦, is the indoor temperature in the cooling season baseline condition ܴܶܪ௦ is the heating run time in the period of study for the baseline indoor 
temperatures, as estimated using the previously derived model ܴܶܥ௦ is the cooling run time in the period of study for the baseline indoor 
temperatures, as estimated using the previously derived model 

 
 

Calculate savings. Savings are calculated in percent run time reduction, with the following 
formulas: 

ܵܪ  = 100 × ሺܴܶܪ௦ − ܵܥ ௦ܴܶܪ/௦ሻܴܶܪ = 100 × ሺܴܶܥ௦ −  ௦ܴܶܥ/௦ሻܴܶܥ
 
where ܴܶܪ௦ is the observed heating run time in the period of study ܴܶܥ௦ is the observed cooling run time in the period of study ܵܪ is the heating savings metric (in %) ܵܥ is the cooling savings metric (in %) 

 
It should be noted that EPA does not consider the result predictive of savings for any 

individual thermostat installation. There are a number of reasons that the results could vary in 
any given installation, and the results are only indicative of performance when averaged over a 
large sample of homes for which these factors tend to average out.  

 
Aggregation 
 

In other analyses such as PRISM and its descendants, the savings calculation for one 
home or a group of homes relies on a pre-retrofit data or a group of homes that received no 
treatment.   For CTs, there is generally no similar data available from a control group of homes 
without CTs. Nevertheless, the homes receiving CTs represent a very large – tens of thousands—
and diverse set of homes. Factors that affect metric scores for specific homes can be expected to 
vary randomly, including: 

 
• Occupancy patterns 
• Household response to the particular strategies used by the product to achieve savings. 

For instance, turning off or on particular features, response to behavioral prompts, etc.  
• Changes in occupancy patterns or thermal needs of residents (e.g. due to illness) 
• Variations in solar gain over the course of a season 

 
Thus, aggregating scores over a large sample of homes will better reflect the capabilities 

of the product. However, savings scores vary widely from climate to climate, largely because a 
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1°F change in ΔT will equate to a large percentage of ΔT in mild climates and a small one in 
more extreme climates. Furthermore, different vendors may have very different distribution of 
subscribers across climate zones. To fairly represent savings of all vendors, it is likely necessary 
to collect scores aggregated within climate regions. The Energy Information Administration 
(EIA) climate zones [https://www.eia.gov/consumption/residential/maps.cfm ] provide a 
convenient broad-brush distinction, and allow comparison of scores with public data from EIA 
and RECS.  

 
Discussion 
 

In this paper we outlined a procedure to calculate a hybrid performance metric of 
connected thermostats (CTs) using data from the installed base of thermostats. It can be used 
with any baseline average daily indoor temperature. We explored one such baseline in some 
detail: a constant comfort temperature, with the comfort temperature derived from analysis of 
each home's set point history. This baseline partially corrects for variation in user population 
between products which would otherwise tend to skew metric scores. However, savings from 
products that successfully encourage more energy-saving comfort set points will not be captured. 
A regional baseline would capture these savings, but unless the regions are small enough, may 
also introduce bias between products based on their geographical spread of deployments. While 
public data for a highly granular regional baseline do not exist, CT service provider data could 
themselves be used to develop such a baseline. Regional baselines developed from this data may 
not reflect the true consumer savings from purchasing a CT compared to other types of 
thermostats. In future work, EPA intends to investigate the implications of using regional 
baselines. 

One fundamental issue with the hybrid run time metric is that it deals poorly with HVAC 
systems where energy use is not roughly proportional to run time. Currently, true variable 
capacity systems are a small percentage of installations, though we expect their popularity to 
rise; already staged systems are more common. The metric might be modified for staged systems 
by weighting run time with an estimated proportion of energy use by each stage. Truly variable 
capacity systems may be able to provide estimated energy consumption information directly. 
Heat pump systems with electric resistance auxiliary heat are similar to staged systems. 
However, the metric as described might allow adequate comparison of CTs controlling these 
systems, and we look forward to exploring the results with stakeholders in the near future.  

Another challenge is accounting for float - the tendency for homes to be warmer than the 
average set temperature in the heating season or cooler than the average set temperature in the 
cooling season, particularly in shoulder seasons. High solar gain and opening windows during 
cool mornings may cause this kind of temperature variation. Generally, it results in high comfort 
with low energy use. Fortunately, most HVAC run time occurs on days when float is not an 
issue, and indoor temperatures track set temperatures closely. We plan to evaluate the 
implications of ignoring float on our results.  

The hybrid metric does not account for saving strategies that are not reflected in indoor 
temperature, e.g. humidity control, air movement, and ventilation. A run time reduction metric 
using a baseline purely referring to HVAC run time could capture these saving. Such a baseline 
is complicated significantly by home to home variation in HVAC sizing relative to heating and 
cooling loads, a datum that is invisible to the thermostat.  
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Conclusions 

 
We have presented a first effort to quantify savings using the wealth of data available 

from connected thermostats installed in homes. We look forward to the evolution of such 
methods to take full advantage of that data, including hourly information. Our hope is that 
engagement of CT providers with EPA in the context of the ENERGY STAR program will 
encourage data sharing and openness and hasten the advent of such methods.  

 
We are still unable to unequivocally answer the question posed in this paper’s title, “Do 

connected thermostats save energy?” However, we described many of the steps and procedures 
that will be used as the data become available. We expect that, in the next few years, the answer 
will become clear. Moreover, we expect that it will be possible to identify which vendor’s 
products save the most energy. 
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