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ABSTRACT 

A confluence of global factors is fueling the utilization of robots across all segments of 
society. These include: rising human labor costs; commoditization of electronic components and 
computing power from ubiquitous device manufacturing and on-demand access to the “cloud”, 
respectively; and the rise of machine-learning algorithms that enable robots to perform myriad 
tasks in diverse environments. In this paper, we ask the question:  

How will the proliferation of robots in industry, businesses, and homes impact electricity 
load, both directly and through interactions with other end uses and devices? 

Our work projects the future electricity load of societal ‘robotification’ as the framework 
for a thought-piece on the impacts of automation. Using industry sales forecasts and 
manufacturer data, we construct a stock-accounting model to project robot electricity 
consumption through 2025. We estimate it will increase to between 0.5-0.8% of total U.S. 
electricity demand in 2025. Additionally, we develop a qualitative framework to investigate how 
consumption might change due to interactive effects that include: 

 
1. High efficiency equipment to power robots 
2. Reduced lighting and heating load in fully automated, “lights out” factories 
3. Improved robot efficiency through R&D 
4. Robot replacement of tasks previously performed by humans 
5. Increased productivity in industrial operations and ease-of-use in domestic applications 

 
This paper seeks to begin a discussion on the load impact of ubiquitous automation and to 

motivate case studies to quantify the net load impacts of robots in specific instances across all 
sectors. 

Introduction 

A 2013 Oxford study by Frey and Osborne found that 47% of jobs occupied by humans 
are “highly susceptible” to automation (Frey et al. 2013). To put this into a historical context, 
technology advancements have been upending labor paradigms since the dawn of agriculture. 
The Industrial Revolution replaced skilled artisans with unskilled labor organized into discrete, 
repetitive tasks in assembly lines. Electrification in the late 19th Century allowed many stages of 
the production process to be automated, which in turn increased the demand for relatively skilled 
blue-collar workers to operate machinery and highly-trained white collar workers to manage 
teams of operators. Fast forward to the 21st Century and the continuation of this trend may 
disrupt nearly half of the modern labor force due to the advent of robotic automation and 
machine learning algorithms. 

The McKinsey Global Institute estimates that robot prices have fallen 10% annually in 
recent years and are likely to decline at a more rapid pace over the next decade (Manyika et al. 
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2013).  Declining costs, leaps in pattern recognition through machine learning, and rising human 
labor costs are likely to converge to transform modern labor practices and workforces. 

Projecting the impact of this new fleet of robots on electricity load is of critical 
importance to the energy industry. Key parameters are number of units, electricity consumption 
per unit, interactive effects with other end uses, and growth rates of all these parameters in future 
years. Rates of change for all these parameters is highly uncertain; for example, there are current 
efforts to increase the energy efficiency of individual robots, like the Chalmers University of 
Technology work reporting that a 40% reduction in total robot energy consumption can be 
attained by optimizing the smoothness of robot motions without sacrificing productivity 
(Chalmers Univ. 2015).  Our study aims to lay an initial foundation to consider the net impacts 
of robots on electricity load and utility forecasting. 

Methods 

Robot Reference Case – No Interactive Effects 

 The International Federation of Robotics (IFR) produces statistics on robot markets and 
sales forecasts for the robotics industry. They divide all robots into three categories: industrial, 
professional service, and domestic service. The IFR estimates that 248,000 industrial robots were 
sold globally in 2015, representing a 17% year-over-year (YoY) increase from 2013. They 
project 1.3 million industrial robots will enter the market between 2016 and 2018, a higher 
number than those sold in the entire period from 2008 through 2015 (IFR 2016). The IFR also 
estimates that 25,000 professional service robots and 4.6 million domestic service robots were 
sold in 2014, most of which were autonomous vacuum cleaners (iRobot 2016). They expect 
another 152,375 professional service robots and 34.9 million domestic service robots to be sold 
between 2015 and 2018, representing a 23% YoY increase over that period. 

Starting with the IFR projection of unit sales through 2018, we developed three sales-
growth scenarios for industrial robots through 2025: Low at 10%, Mid at 17% and High at 24%. 
For service robots, we chose three more sales-growth scenarios: Low at 15%, Mid at 23% and 
High at 30%. In both cases, the Mid growth rate is developed from IFR historical or forecast 
data, as mentioned above. We assume the allocation of sales by robot type and segment remain 
constant. 

We paired IFR sales data and forecasts with annual estimates of per-robot energy 
consumption (instantaneous power draw multiplied by expected hours of operation) for each 
robot category to estimate annual energy usage through 2025. Average power draw for each 
robot type was estimated using manufacturer specification sheets for a representative unit robot 
when available. Otherwise, engineering assumptions were made. Robust estimates for industrial 
robot energy consumption for each segment of industry would require an in-depth survey of the 
distribution of robotic equipment operating in industrial facilities and was beyond the scope of 
this paper.  

Assumptions for energy consumption are presented in Table 1. Change in the number of 
operational robots for any given year is calculated as the difference between projected unit sales 
and the yearly robot turnover, assuming an average lifetime for each robot type. 
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Table 1. Energy usage assumptions by robot type. 

Robot Type 

Instantaneous 
Power Draw 

(Watts) 

Daily Operating 
/ Charging 

Hours 

Annual 
Energy Usage 
(kWh/Unit) 

Lifetime 
(years) 

Industrial  
Average Industrial  3,000   20   21,915   14  
Professional Service 
Unmanned Aerial 
Vehicles (Military-Use) 

 3,000   5   5,479   2  

Unmanned Ground 
Vehicles 

 5,000   4   6,392   2  

Demining  1,100   1   452   2  
Milking  540   6   1,085   8  
Barn Cleaners / Robotic 
Fencers  

 540   5   986   8  

Field Robots  540   5   986   8  
Robot-Assisted Surgery  2,750   3   3,013   15  
Other Medical  2,750   3   3,013   15  
Automated Guided 
Vehicle 

 425   3   466   8  

Mobile Platforms  19,700   3   21,586   8  
Cleaning Robots  140   2   102   5  
Rescue & Security  550   2   326   4  
Inspection & 
Maintenance 

 810   2   592   4  

Average Professional  4,096   2   2,805   8  
Domestic Service    
Handicap Assistance 
Robots 

 275   7   703   5  

Personal Assistants  150   7   384   5  
Vacuum  35   2   26   5  
Lawn Mowing  290   1   58   5  
Other Cleaning  35   2   26   5  
Education & Research  75   2   62   3  
Robot Toys   30   2   25   3  
Fully Autonomous EVs  1,950   6   4,273   8  
Average Domestic   53   2   43   5  

 
Figures for robot sales, operational robots and reference case robot load are given in 

Table 2 for the Mid case (17% industrial robot and 23% service robot YoY sales growth rates). 
The reference case represents only the plug load consumption of all operational robots and is not 
necessarily indicative of the net load impacts for each robot type. 
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Table 2. Reference case robot electricity load is driven by growth in the total number of 
operational robots and unit sales1 

Robot Type 
Unit Sales 

(2014) 
Total Robots in 

Operation (2014)
2014 Robot 
Load (GWh) 

2025 Robot 
Load (GWh) 

YoY 
Growth 

      
U.S Total 1,642,498 3,530,291 5,334 22,822 13.2% 
      
Industrial 
Manufacturing 

25,350 203,637 5,058  15,954  10.4% 

Automotive 13,943 112,000 2,782  8,775  10.4% 
Electronics 3,740 30,045 746  2,354  10.4% 
Rubber/Plastics 1,309 10,516 261  824  10.4% 
Pharmaceutical 187 1,502 37  118  10.4% 
Food/Beverage 748 6,009 149  471  10.4% 
Metallurgical 1,683 13,520 336  1,059  10.4% 
Others 3,740 30,045 746  2,354  10.4% 
      
Professional 
Service 

10,957 45,079 153  4,475  30.7% 

Unmanned Aerial 
Vehicles (UAVs) 

4,721 9,442 72  941  23.3% 

Unmanned 
Ground Vehicles 

852 1,705 16 
 202  23.3% 

Demining 183 366 0  4  23.3% 
Milking 1,807 14,456 18  226  23.0% 
Barn Cleaners/ 
Robotic Fencers  

56 447 1  4  17.9% 

Field Robots 1,988 15,907 19  114  16.3% 
Robot-Assisted 
Surgery 

341 1,023 5  195  33.7% 

Other Medical 86 257 1  49  33.7% 
Automated 
Guided Vehicle 

461 738 0  50  43.2% 

Mobile Platforms 461 738 21  2,684  44.1% 
      
Domestic Service 1,606,192 3,281,576 123  2,393  27.0% 
Handicap 
Assistance Robots 

1,540 7,702 9  71  19.3% 

Vacuum 1,024,642 1,280,802 35  1,037  30.8% 
Lawn Mowing 63,261 316,303 28  230  19.1% 
Other Cleaning 63,261 316,303 9  71  19.1% 
Robot Toys  453,488 1,360,465 42  651  24.9% 

 

                                                 
1 Only significant contributors to the reference case robot load are included in Table 2. 
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In the Mid growth rate scenario, our projection indicates that aggregate U.S. robot 
electrical energy load will rise to 22,822 GWh in 2025 from a robot fleet of 49 million robots.  
By way of comparison, this is roughly equivalent to the electricity load of all refrigerators in the 
northeastern United States in 2009 (EIA 2009). In 2025, the clear majority of robots are non-
industrial (98%), while most of the load is industrial robots (77%). 

Our conservative, Low growth case projects consumption of 19,987 GWh from 31 
million robots in 2025, and we estimate 26,218 GWh of consumption in the High growth 
scenario from 77 million robots. 

 

 
Figure 1. U.S. robot energy consumption by robot class – Low, Mid and High sales growth scenarios 

 

 
   Figure 2. U.S. robot energy consumption by robot class – Mid sales growth scenario 
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Service robots maintain a dominant share of total operational robots over the forecast 
period, rising to 38.2 million robots in 2025 in the Mid sales growth scenario. However, their 
large numbers have little impact on the aggregate robot energy consumption forecast because 
they use relatively little energy on a per-unit basis. In fact, autonomous vacuum cleaners and 
robot toys make up 86.5% of total robot sales over the forecast period, but these units have an 
assumed consumption of around 30 kWh per year – an amount near that of a light bulb or laptop 
computer.  Thus, they account for less than 5% of total reference case robot load over the 
forecast. Industrial and manufacturing robots are heavy users on a per-unit basis, consuming an 
average of over 21,000 kWh annually. Combined with a total unit count in the hundreds of 
thousands, they make up the lion’s share of the robot load over the forecast period. Industrial 
robots account for 87% of the total reference case robot load in 2015, dropping to 77% in 2025 
due to significant growth in service robot sales in the U.S. 

Interactive Effects 

The above robot load projections do not adequately reflect the net load impact of 
automation. Interactive effects must also be accounted for when traditional tasks are replaced or 
automated. For example, an industrial robot can replace a piece of equipment with identical 
energy consumption patterns and characteristics, resulting in no net load impact of automation. 
We have identified five interactive effects to capture the energy interactions between robots and 
the environments in which they operate; three that tend to decrease overall electricity 
consumption and two that tend to increase it. 

Factors that decrease electricity consumption. 
• Factor #1 – Robots replace traditional machine tasks more efficiently 

o Robots replace automatable machinery and consume less energy than the retired 
equipment. The robot system could include highly efficient control systems as 
well as high efficiency motors and electronics, causing a net decrease in load. 
Another scenario could involve a single robot replacing multiple machines due to 
its relative dexterity and mobility, traits that could amplify as robotics research 
progresses. 

• Factor #2 – “Lights out” 
o Numerous operational changes to industrial and commercial facilities may occur 

with greater market penetration of robots.  For example, there are already 
numerous “lights out” factories and warehouses, where industrial robots operate 
in unlit, unconditioned environments which allows facilities to eliminate 
considerable heating and lighting loads. “Lights out” facilities include a Philips 
factory in the Netherlands that manufactures razors with only nine quality 
assurance workers (Brooks et al. 2012) and the first-mover FANUC factory in 
Japan where robots have been building other robots since 2001 (Null et al. 2003). 

• Factor #3 – Robot R&D improves efficiency 
o Optimizing robot movement patterns can achieve a 40% reduction in usage, 

without sacrificing productivity, by eliminating jerky motions and acceleration 
(Chalmers Univ. 2015).  Advanced lightweight materials will decrease all 
machine consumption in the coming decades and the most advanced systems (i.e., 
robotic systems) will benefit most from this trend. 
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Factors that increase electricity consumption. 
• Factor #4 – Robots replace human-powered tasks and human-machine collaboration 

increases 
o Improvements in machine learning on large data networks will allow robots to 

replace an ever-increasing share of tasks currently performed by humans. 
Examples include autonomous vacuums, window cleaners, floor sweepers, 
delivery vehicles and forklifts. While the 2013 Oxford study indicates that 47% of 
jobs are automatable, the net energy impact of automating human tasks is 
uncertain. For example, automating such tasks as domestic cleaning and manual 
assembly of manufactured parts will increase net consumption. However, 
automation of clerking and technician-posts may replace humans which operated 
computers themselves, resulting in a negligible net change in consumption. 

o Human-robot teams are another major theme that could emerge in the future. 
Technologies such as virtual and augmented reality glasses, exoskeletons, and the 
like could mean incremental, additional power consumption. But they could also 
enable human-and-machine teams to complete more tasks faster, more 
powerfully, and more precisely. 

• Factor #5 – Robots improve productivity 
o In the residential sector, a robot influx will increase machine assistance of 

handicapped individuals and embed human-machine interaction in everyday home 
and office life with personal assistants such as Pepper, the Japanese robot with 
emotional intelligence. The medical field will see a rise in surgical robots. Also, 
robot toys are likely to become increasingly energy-intensive as toymakers 
develop more product lines similar to Lego Mindstorms.  

o Automation of gas-powered machines, such as fully autonomous vehicles, will 
accelerate fuel-switching to electricity. 

o This effect can be particularly nuanced in the residential sector where the robot’s 
utilization can be much greater than the machine it is replacing. For instance, a 
robotic vacuum may have a lower power draw than a plug-in vacuum, but the 
ability to schedule it daily may dramatically increase the frequency of vacuuming.   

 
At this time, trying to quantify the net impact of these interactions on a facility or home’s 

load would require developing a full set of assumptions that is beyond the scope of this paper 
and would rely upon comprehensive case studies which were not available in the literature. Our 
model is prepared to project robot load impacts on a sector-wide basis when proper case studies 
have been carried out to better quantify the five interactive factors. Nevertheless, we feel it is 
important to lay the groundwork for an exhaustive analysis of these interactions in the future. 
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Figure 3. Depiction of interactive factors that will influence net load change due to robots. 
Efficient robot integration in all sectors will push the balance to the left. 

Conclusions and Further Work 

Further research is needed to develop case studies for specific instances of robotic 
automation in order to quantify the five interactive energy factors that we have described in this 
paper. Accurate measurement of these factors will allow for development of best practices that 
will maximize efficient robot integration into industrial facilities, offices and residential homes. 
In particular, service robots represent an imminent and unprecedented penetration of robots into 
our daily lives and may warrant significant attention from utilities. The opportunities to improve 
the efficiency of the coming robot expansion are numerous and could include: 

 
1. Increased R&D into robot motion patterns 

a. Incentivize manufacturers to optimize on energy consumption in tandem with 
their existing goal of maximizing performance. 

2. Upgrade equipment when implementing robots 
a. This will be a significant point of turnover in the timeline of any facility and may 

represent a great opportunity to upgrade any process equipment. 
b. Incentivize C&I and residential robot manufacturers to integrate efficient 

electronics and motors into their robotics. 
3. Improve integration of robots with a focus on support load minimization 

a. Optimize spatial orientation of robot process lines relative to other human-guided 
operations. 

b. Modify scheduling to minimize human presence and maximize the “lights out” 
effect. 
 

Energy Use Decreases Energy Use Increases
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In conclusion, our reference case projects total robot consumption at 22,822 GWh or 
0.57% of U.S. total load in 2025. The five energy interactions described in this paper may 
combine to swing the actual 2025 net total robot load drastically above or below this figure. We 
have proposed a framework to categorize and analyze the energy interactions of all robot types 
across all sectors. With sufficient case studies to accurately quantify the interactive energy 
factors, we can develop robust forecasts to better estimate the expected electricity impact of the 
coming robot boom.  
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