

EPEI ELECTRIC POWER RESEARCH INSTITUTE

# CO<sub>2</sub> Heat Pump Water Heaters for Commercial & Industrial Applications

Troy Davis, Mayekawa USA John Bush, EPRI

ACEEE Hot Water Forum February 22, 2016

# **Presentation Overview**

- Natural Refrigerant Summary
- EPRI Laboratory Evaluation Overview
- EPRI Laboratory Results
- Mayekawa Water Source CO2 Heat Pump Introduction
- Water Source CO<sub>2</sub> Heat Pump Commercial Applications
- Water Source CO<sub>2</sub> Heat Pump Industrial Applications

# Why Use Natural Refrigerants?

Natural Refrigerants including Carbon Dioxide, Ammonia, Hydrocarbons, Air and Water have excellent thermodynamic properties in their respective temperature limits, which allow for maximum system COP when used in properly designed equipment.

- Environmental impact of each refrigerant -

| Type of refrigerant                     | CFC<br>(Abolished refrigerant)                                                                                                                   |       | HCFC<br>(Regulated<br>refrigerant                                                                  | HFC<br>(Substitute refrigerant)                                                                                                                   |       |       |       | Natural Refrigerants                                                             |             |             |                         |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|----------------------------------------------------------------------------------|-------------|-------------|-------------------------|
| Name of refrigerant                     | R11                                                                                                                                              | R12   | R502                                                                                               | R22                                                                                                                                               | R134a | R404A | R407C | R410A                                                                            | R717<br>NH₃ | R744<br>CO₂ | R600a<br>Isobu-<br>tane |
| Ozone<br>depletion<br>potential (ODP)   | 1.0                                                                                                                                              | 1.0   | 0.334                                                                                              | 0.055                                                                                                                                             | 0     | 0     | 0     | 0                                                                                | 0           | 0           | 0                       |
| Global<br>warming<br>potential<br>(GWP) | 4750                                                                                                                                             | 10900 | 4590                                                                                               | 1810                                                                                                                                              | 1430  | 3922  | 1650  | 2088                                                                             | >1          | 1           | 4                       |
| Features                                | <ul> <li>Chlorine depletes ozone layer.</li> <li>Refrigerator, car air-conditioner</li> <li>Already abolished completely in<br/>1995.</li> </ul> |       | Target to be<br>regulated due to<br>Montreal Protocol<br>To be abolished<br>completely in<br>2020. | <ul> <li>Composition is very unstable.</li> <li>No depletion of ozone layer</li> <li>Specified as greenhouse gas in Kyoto<br/>Protocol</li> </ul> |       |       |       | •Existing in nature<br>Ammonia, carbon<br>hydride, water, air,<br>carbon dioxide |             |             |                         |

- ASHRAE Position Document affirmed in 2011 highly supports the wider use of Ammonia, CO2 and Hydrocarbon refrigerants for HVACR applications.
- Natural Refrigerant use promoted through the LEED certification program.



# **CO<sub>2</sub> Heat Pump Water Heaters**

- CO<sub>2</sub> Transcritical Heat Pumps:
  - Single-pass heating
  - High hot water outlet temperature
  - Efficiency a function of temperature lift









## **EPRI Lab Testing**

- Mayekawa HWW-2HTC water-to-water HPWH
  - Heating capacity up to 340,000 BTU/h; Cooling capacity up to 280,000 BTU/h
  - Hot water delivery at 149°F or 194°F
  - UL 1995 standard -Approved, Available in US
- Testing: "performance mapping" for various application types



## **EPRI Lab Testing – Results Overview**



Heating COP, 194°F Supply Water



## **EPRI Lab Testing – Results Overview**





## **Utility Value**

- CO<sub>2</sub> HPWHs Could Fill Program Needs
  - Expands the applicability of HPWH
    - >190°F supply temperatures for applications needing high temp
  - Efficiency benefits
    - Combined COP >5.5 @ 194°F
- Applications
  - Many uses in south (cooling often needed)
  - Best-case financials in colder climates if cooling is useful or heat recovery source available





## Mayekawa UNIMO ww Water Source CO<sub>2</sub> Heat Pump



#### **MFG. RATED PERFORMANCE**

- 100 kW @ 194 F Water
- 340,000 btu/hr @ 194°F)
- 25 kW Motor
- (30 HP Motor)
- Heating COP is as high as 4
- Combined COP is as high as 8



# Mayekawa UNIMO ww - Mfg. Rated Performance



#### Natural refrigerant (CO<sub>2</sub>) heat pump to supply cold and hot water simultaneously

| Capacity               | Brine type                                    | Cold water type                                      | Heat recovery type                                                                  |  |
|------------------------|-----------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------|--|
| Heating capacity [kW]  | 49.9                                          | 82.1                                                 | 101.8 (COP=4.4)                                                                     |  |
| Cooling capacity [kW]  | 35.0                                          | 61.7                                                 | 82.3 (COP=3.6)                                                                      |  |
| Power consumption [kW] | 18.4                                          | 21.8                                                 | 23.1                                                                                |  |
| COPt (total)           | 4.6                                           | 6.6                                                  | 8.0                                                                                 |  |
| Condition              | Supplied water (62→149 F)<br>Brine (23→-16 F) | Supplied water (62→149 F)<br>Chilled water (54→44 F) | Supplied water (62 $\rightarrow$ 149 F)<br>Heat source water (72 $\rightarrow$ 62 F |  |

| Operation range                                  | Water heater        | Heat Source Condition |                           |                    |  |  |
|--------------------------------------------------|---------------------|-----------------------|---------------------------|--------------------|--|--|
| operation range                                  | (Heater)            | Brine diversion type  | Cold water diversion type | Heat recovery type |  |  |
| Inlet temp. (F)                                  | 40~104<br>(40~149*) | 23 ~ 98.6             | 50 ~ 98.6                 | 50 ~ 98.6          |  |  |
| Outlet temp. (F)                                 | 149, 194            | 15 ~ 89.6             | 41 ~ 89.6                 | 41 ~ 89.6          |  |  |
| Difference between inlet<br>and outlet temp. (F) | 45~95               |                       | 7~12                      |                    |  |  |
| Flow rate (GPM)                                  | 2.2 ~ 9.2           |                       | ≧26                       |                    |  |  |

\* At 194 F set point



# Water Source CO<sub>2</sub> Heat Pump Commercial Applications

"Possible to supply chilled water or heat recovery and hot water simultaneously



Are there cooling loads or heat recovery sources? Energy conservation is possible by combining chilled water or heat recovery and hot water functions in one heat pump.

© 2013 Electric Power Research Institute, Inc. All rights reserved.



## Water Source CO<sub>2</sub> Heat Pump Hotel Application



- Existing gas water heaters were in efficient and required constant maintenance. Only LPG.
- □ Hotel Owner wanted an efficient electric option
- □ High constant cooling load required for Hotel



#### **CO2 Water Source Hot Water Heat Pump**

- Combine heating and cooling functions in a single compact unit.
- Low carbon emission solution.
- Increased hot water system efficiency



Water Source CO<sub>2</sub> Heat Pump Hotel Application Existing Mechanical Equipment for Domestic Hot Water Heating and Chilled Water Air Conditioning Cooling



### Water Source CO<sub>2</sub> Heat Pump Hotel Application New Mechanical Equipment Layout with Water Source CO<sub>2</sub> Heat Pump



**RESEARCH INSTITUTE** 

#### Water Source CO<sub>2</sub> Heat Pump Hotel Retrofit Installation New Mechanical Equipment Layout with Water Source CO<sub>2</sub> Heat Pump



**UNIMO ww Unit** 



Hot Water Storage Tank



Heat Pump installed in chiller mechanical room



**Hot Water Piping** 



#### **Heat Source Piping**



## Water Source CO<sub>2</sub> Heat Pump Winery Application

#### SOMERSTON Vineyards



Energy Efficient Estate Winery Facility located in Napa Valley, California

Goal to become off grid for power source
 Required high hot water temperature
 Only expensive propane available

#### Solution: CO<sub>2</sub> Water Source Hot Water Heat Pump





### Water Source CO<sub>2</sub> Heat Pump Winery Piping Layout Hybrid Glycol Cooling, Glycol Warming and Hot Water Heating







# Water Source CO<sub>2</sub> Heat Pump Heat Recovery Building Heating Application

- (4) UNIMO ww units installed in Basement Mechanical Room.
- Seawater Heat Source
   39 F to 56 F (4 C to 13 C)
- Hot Water Secondary Loop 194 F (90 C). Outlet feeds into 135 F to 160 F Building Heating Loop
- Heat Pumps used as primary Building Heating with Oil Boiler and Electric Boiler as Backup/Emergency units.





Seawater Heat Exchanger



Heat Source and Hot Water Unit Piping





## Water Source CO<sub>2</sub> Heat Pump Heat Recovery Industrial Process Application

#### **Original situation**

 Hot water for cleaning in each process is produced by using "steam + well water".

 Warm wastewater exceeding 104 F and flowing to the wastewater treatment tank is thrown away.





# Water Source CO<sub>2</sub> Heat Pump Heat Recovery Industrial Process Layout

#### Installation of Water Source CO2 Heat Pump

- High-efficiency operation of Heat Pump with warm wastewater from treatment tank as heat source
- · Problem of water quality has been solved through special spiral heat exchanger







# Thank you!

John Bush, P.E.

Sr. Project Engineer / Scientist Electric Power Research Institute

#### jbush@epri.com

Troy Davis Energy Manager Mayekawa U.S.A. tdavis@mayekawausa.com





© 2013 Electric Power Research Institute, Inc. All rights reserved.