CO$_2$ Heat Pump Water Heater Tests
What We Know and What We Wish We Knew

Presented by Ken Eklund
2016 ACEEE Hot Water Forum
February 22, 2016
What We Know
The CO$_2$ Split System HPWH Performs Well

- As an efficient water heater
- In cold climates
- Meeting an average or larger hot water load
- As a Demand Response provider
- As a Capacity Reducer
HPWH Performance

• Energy per gallon is a great metric to compare water heater performance
• The average energy per gallon over the full field test period was .0475 kWh per gallon
• Electric resistance water heater performance is .22 kWh per gallon or 4 times more energy
• A major field study of US made unitary HPWH averaged .1 kWh per gallon
Field Sites

- 4 homes from the coast to Montana
- Minimum family size of 4—up to 7
- Billing history of at least 3 years with electric resistance water heat
- Avista, ETO, Ravalli Electric, and Tacoma Power found sites
kWh/g for Each Site

Daily Flow and Energy

<table>
<thead>
<tr>
<th>Site</th>
<th>Addy</th>
<th>Montana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily Total HPWH Energy (kWh)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily Total Flow (gal)</td>
<td>0 - 200</td>
<td>0 - 200</td>
</tr>
<tr>
<td>Slope</td>
<td>0.06</td>
<td>0.04</td>
</tr>
</tbody>
</table>

- Coldest Site
- Average Water Use Site
Savings Potential

• 2.7 people per household (PNW average)
 – Use ≈ 45 gal/day
• Split System CO$_2$ HPWH saves ≈ 0.175 kWh/gal
 – 2,436 kWh/year savings
Cold Weather Performance

HPWH Energy Use during a 9-day cold weather period (Montana)

Outside Air Temperature (F)

75.2g 32.3g 91.7g 66.0g 61.5g 32.7g 14.1g 93.1g 60.3g
HPWH Performance

- kWh per 100 gallons water delivered (inverse Logsdons)
DEMAND RESPONSE

Unitary System

PNL Lab Home
SPLIT SYSTEM
Extreme Oversupply Mitigation Test

Water Heater Off at 1 pm
To Make Room to Absorb Off-Peak Wind Energy

Split System (80 Gallons) Unitary System (40 Gallons)

Note: the top point on the chart is water temperature – the bottom point is the cooled pipe temperature between draws and not relevant to delivery
DR Value

“A significant amount of [Demand Response] potential, nearly 1,500 megawatts, is available at relatively low cost; less than $25 per kilowatt of peak capacity per year” 7th Power Plan

The controllable power draw of the split system is 1.2 kW. It can also provide 2.6 kW of storage for oversupply mitigation.
Peak Impact
Most Hot Water Demand is at Peak Times
Efficiency Impact of Load Shift

- **Demand Response**
 - Yes
 - No

- **Tank Volume**
 - 40 Gallons
 - 80 Gallons

![Graph showing COP vs. Number of Persons with different demand response and tank volume settings.](image)
Capacity Reduction

The 7th Pacific NW Regional Power Plan gives a Transmission & Distribution credit of $12 per MWh
Capacity Value

• Average Annual Load ERWH = 3.2 MWh
• Average Annual Load CO2 HPWH = .8 MWh
• Delta is 2.4 MWh
• @ $12/MWh = $28.8 per year in value
• PV at 5% Rate and 20 year life - $360
What We Wish We Knew
Will Utilities Support This Technology?

• Does it get the T&D credit?
• Will it be compared to an electric resistance water heater for cost effectiveness analysis?
 – No electric element
 – No impact on conditioned space
 – Arguably cost-effective if it is compared to ERWH
Benefit to Cost

Cost

- CO\textsubscript{2} HPWH with 43 gallon stainless tank = $2,200
- Installation by efficient experts = 800
- Parts (wholesale) = 200
- Markup = 600

Total Gross Cost

= 3,800

Credit for no ERWH (as per NWPCC)

= 800

Net Cost

= $3,000
Benefit to Cost

Benefit & Ratio

Annual Savings = 2,436 @ $.10/kWh = $244
T & D Value = 2.4 MWh x $12 = 29
Total Benefit = $272
Discount Rate = 5%
Life = 20 yrs
Simple Payback = 12 yrs
PV Savings = $3,395
Benefit to Cost Ratio = 1.13
NEBs

Global Warming Potential

<table>
<thead>
<tr>
<th></th>
<th>GWP</th>
<th>ODP</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-11</td>
<td>7020</td>
<td>1</td>
</tr>
<tr>
<td>R-12</td>
<td>4750</td>
<td>1</td>
</tr>
<tr>
<td>R-22</td>
<td>1810</td>
<td>0.055</td>
</tr>
<tr>
<td>R-134a</td>
<td>1430</td>
<td>0</td>
</tr>
<tr>
<td>R-410a</td>
<td>2088</td>
<td>0</td>
</tr>
<tr>
<td>CO2 (R-744)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Source: http://www.epa.gov/ozone/snap/subsgwps.html
CONCLUSION

• The split system can handle water heating to minus 20 degrees F
• Is 4x as efficient as electric resistance water heating and uses about half current HPWH energy
• Has strong DR capability and high capacity value
• 40 gallon unit can produce 135 gallon per day
• Impact of refrigerant on the climate is minimal
Thanks

To Adria Banks, WSU lead analyst
To Ben Larson, Jonathan Heller, Nick Kvaltine and Colin Grist, Ecotope
To Melinda Spencer, WSU technical editor
To Bruce Carter, Fred Gordon, Rem Husted, Tom Lienhart, & Jim Maunder—utility partner reps
To PNNL’s Graham Parker, Joe Petersen & Sarah Widder & Greg Sullivan, Efficiency Solutions
To Mark Jerome, CLEAResult, lead installer
To David Hales, WSU lead monitoring installer
To Janice Peterson, BPA project manager
To Dave Kresta & Charlie Stephens, NEEA
To Maho Ito, John Miles, & Charles Yao, Sanden International
To the Regional Advanced HPWH Advisory Task Force
Contact Information

• Ken Eklund, Building Science & Standards Lead
 Washington State University Energy Program
 eklundk@energy.wsu.edu
 Project Principle Investigator and Manager
Washington State University Energy Program

DISCUSSION