Compact DHW Distribution in Single Family New Construction Homes
2016 ACEEE Hot Water Forum

Farhad Farahmand (TRC)
Gary Klein (Gary Klein and Associates)
Marc Hoeschele and Peter Grant (Davis Energy Group)
Yanda Zhang (ZYD Energy)
February 22nd, 2016
Overview

• **Background**
 – Scope and goals
 – Status quo and California’s Title 24

• **Methodology and Findings**
 – Performance analysis
 – Workshops and interviews

• **Next steps**
 – Preliminary measure selections
 – Lab and field demonstrations
Scope for Compact Distribution Design

• Inform programs, design guidelines, and code (Title 24)
 – Designs to reduce water, energy, and time wasted
 – Improve end-user satisfaction
 – Consider cost effectiveness

• Hot water distribution (e.g. pipe diameter, fixture locations)
 – Related elements are considered (e.g., water heater type, insulation)

• New construction, single family residential
 – Not multifamily or nonresidential

• Our role
 – Performance analysis
 – Engagement
 – Measure development
 – Demonstration

Source: https://buildingsfieldtest.nrel.gov/hot_water_distribution
Literature Review

• Current Practices
 – PEX piping
 – Trunk and branch
 – Water heater located in garage
 – Direct paths often avoided (DEG, 2012)

• Research
 – Water Usage: 17 gpd-person of hot water, though there is significant variation (Lutz, 2011) (Henderson, 2015)
 – Water Waste:
 • 1.8 gal of warmup waste per shower (1.1 gal is behavioral).
 • 9-25% of water is wasted (Sherman, 2014) (Henderson, 2015)
 • Based on limited field studies and detailed modeling
A Big Part of Title 24’s Standard Budget

[Graph showing DHW Budget as a % of Total Compliance Budget and Estimated % of SF Housing Starts]

DHW Low % of total compliance budget

DHW High % of total compliance
Title 24 Compact DHW Req’s

• Prescriptive requirements - 150.1(c)8A
 – Path A: tankless
 – Path B: Storage water heaters
 • Floor Area Served is defined per water heater
 • HERS field verified piping length

<table>
<thead>
<tr>
<th>Floor Area Served (ft²)</th>
<th>Maximum Measured Water Heater To Use Point Distance (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1000</td>
<td>28’</td>
</tr>
<tr>
<td>1001 – 1600</td>
<td>43’</td>
</tr>
<tr>
<td>1601 – 2200</td>
<td>53’</td>
</tr>
<tr>
<td>2201 – 2800</td>
<td>62’</td>
</tr>
<tr>
<td>>2800</td>
<td>68’</td>
</tr>
</tbody>
</table>

• Performance paths
 – Credits and penalties for alternate distribution methods
Methodology and Findings
Characterizing Fixtures with Polygons

\[
\frac{\text{Polygon Area}}{\text{Conditioned Floor Area}} = \text{Polygon \%}
\]

\[\rightarrow \frac{1,170}{3,253} = 36\%\]
Architectural Compactness Variation
Varying Designs for Volume Estimates

Trunk and branch
4 zones

Home run
10 zones

Circulation
1 zone
Not Yet Analyzed, but Promising

Source: http://www.gothotwater.com/
Varied WH Location and Distribution

- Used standard draw schedules/events

<table>
<thead>
<tr>
<th>1-Story Floorplan</th>
<th>2-Story Floorplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case, T&B, WH in garage</td>
<td>Base case, T&B, WH in garage</td>
</tr>
<tr>
<td>T&B, WH central in garage</td>
<td>-</td>
</tr>
<tr>
<td>T&B, WH central in attic</td>
<td>-</td>
</tr>
<tr>
<td>T&B, WH in pantry</td>
<td>T&B, WH in pantry</td>
</tr>
<tr>
<td>-</td>
<td>T&B, 2x WH</td>
</tr>
<tr>
<td>HR, WH in pantry</td>
<td>HR, WH in pantry</td>
</tr>
<tr>
<td>HR, WH central in attic</td>
<td>-</td>
</tr>
<tr>
<td>Circulation</td>
<td>Circulation</td>
</tr>
<tr>
<td>-</td>
<td>Circulation, 2 zones</td>
</tr>
</tbody>
</table>

WH = Water Heater, T&B = Trunk and Branch, HR = Home Run
Condensed Results

<table>
<thead>
<tr>
<th>Description</th>
<th>Wasted Gallons/Day</th>
<th>% of Base Case</th>
<th>Avg Wait Time (s)</th>
<th>% of Base Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case, T&B, WH in garage</td>
<td>4.9</td>
<td>100%</td>
<td>38</td>
<td>100%</td>
</tr>
<tr>
<td>T&B, WH ext wall of pantry</td>
<td>3.7</td>
<td>75%</td>
<td>25</td>
<td>67%</td>
</tr>
<tr>
<td>HR, WH ext wall of pantry</td>
<td>3.0</td>
<td>62%</td>
<td>15</td>
<td>39%</td>
</tr>
<tr>
<td>Circulation</td>
<td>0.6</td>
<td>12%</td>
<td>4</td>
<td>9%</td>
</tr>
</tbody>
</table>

- Moving WH centrally saves water and time
- Home run system seems to improve performance over T&B
- Circulation saves the most water and time
- Investigating implications for energy waste
How Long Should We Wait?

<table>
<thead>
<tr>
<th>Volume in the Pipe (ounces)</th>
<th>Minimum Time-to-Tap (seconds) at Selected Flow Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25 gpm</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td>24</td>
<td>45</td>
</tr>
<tr>
<td>32</td>
<td>60</td>
</tr>
<tr>
<td>64</td>
<td>120</td>
</tr>
<tr>
<td>128</td>
<td>240</td>
</tr>
</tbody>
</table>

ASPE Time-to-Tap Performance Criteria

- Acceptable Performance: 1 – 10 seconds
- Marginal Performance: 11 – 30 seconds
- Unacceptable Performance: 31+ seconds

Workshop for Interim Feedback

- Attendees included builders, plumbing engineers, and policymakers
- 15 seconds time-to-tap may be marketable
- Barriers to relocating WH indoors (leaks, $$$)
- Considering fixture layout in floorplans is
 - Most economical
 - Least palatable
- Code should consider reducing minimum DHW pipe diameter req’s
- Survey builders (next slide)
Builder Survey Feedback

• Interviewed 2 plumbers and 7 builders

• Builders commonly received wait time complaints
 – Longest wait times commonly exceed 60 seconds
 – Some pre-plumb homes to be compatible with circulation

• Demand circulation systems
 – Heavily penalized in Title 24
 – Passed up by homebuyers

• Builders prefer circulation loop to an under-sink system because of reduced wait time at all fixtures
• Opposite results from workshop – most preferred:
 – Locating WH closer to use points
 – Designing homes more compactly
• Home run systems discontinued due to high costs, no perceived improvement in efficiency

<table>
<thead>
<tr>
<th>No. of Data Points</th>
<th>Base Cost</th>
<th>Incremental Costs for Compact Design Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>T&B, WH in garage</td>
<td>5</td>
<td>Demand recirculation 6</td>
</tr>
<tr>
<td>Home run</td>
<td>2</td>
<td>WH location inside 4</td>
</tr>
<tr>
<td>Under-sink circulation</td>
<td>4</td>
<td>2 water heaters 2</td>
</tr>
<tr>
<td>Average</td>
<td>$3,840</td>
<td>$1,280</td>
</tr>
<tr>
<td></td>
<td>$250</td>
<td>$1,120</td>
</tr>
<tr>
<td></td>
<td>$860</td>
<td>$2,380</td>
</tr>
</tbody>
</table>
Next Steps
Researching Compact Measures

• Water savings are important, but:
 – Homebuyers value cost savings and time savings more
 – Title 24 values energy savings more

• Measures that save time, energy, and are likely cost effective
 1. Water heater close to hot water fixtures (attic or kitchen exterior walls)
 2. Optimized two-zone design (trunks)
 3. Under-sink circulation priming (under-sink pumping)

• Does not preclude other measures
Research Methods to Refine Measures

• Energy savings performance model
 – TRNSYS a black box

• Field demonstrations of measures
 – 6 installations, each with a conventional baseline
 – Measuring entrained volume and time-to-tap

• Lab Testing at the Applied Technology Services (ATS)
 – Attain data to validate energy savings model
 – Collect pressure drop vs. flow rate data
 – Demo measure savings
Thank You!

Farhad Farahmand ffarahmand@trcsolutions.com
Competing priorities

<table>
<thead>
<tr>
<th>Perspective</th>
<th>Priority #1</th>
<th>Priority #2</th>
<th>Priority #3</th>
<th>Priority #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeowner</td>
<td>Time savings and convenience</td>
<td>Reliability</td>
<td>Low incremental cost</td>
<td>Water savings</td>
</tr>
<tr>
<td>Builder</td>
<td>Minimize homeowner complaints</td>
<td>High value (T24 credits) compared to incremental cost</td>
<td>Reliability</td>
<td></td>
</tr>
<tr>
<td>Plumber</td>
<td>Minimize homeowner complaints</td>
<td>Low installation cost, easy implementation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title 24</td>
<td>Energy savings</td>
<td>Water savings</td>
<td>Cost effectiveness</td>
<td>Reliability</td>
</tr>
</tbody>
</table>
Assessment of Compact Solutions

<table>
<thead>
<tr>
<th>Solution</th>
<th>Time</th>
<th>Energy</th>
<th>Cost</th>
<th>Reliability</th>
<th>Water</th>
<th>Marketability</th>
<th>Key Barriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central WH Location</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Market acceptance</td>
</tr>
<tr>
<td>Central Fixtures</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
<td>High; same as status quo</td>
<td>Medium</td>
<td>Low</td>
<td>Market acceptance</td>
</tr>
<tr>
<td>Multiple WHs</td>
<td>Medium</td>
<td>Medium; penalty with storage</td>
<td>High</td>
<td>Medium; more maintenance</td>
<td>Medium</td>
<td>High</td>
<td>Market acceptance</td>
</tr>
<tr>
<td>Circulation</td>
<td>High</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
<td>Costs, energy penalty</td>
</tr>
<tr>
<td>Home Run</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Costs</td>
</tr>
</tbody>
</table>