

PG&E's Applied Technology Services' Hot Water Technology Performance Laboratory

Edwin Huestis, P.E. Senior Mechanical Engineer PG&E Applied Technology Services

ACEEE Hot Water Forum

February 23, 2016

Presentation Objectives

- Describe the history of hot water testing at PG&E's Applied Technology Services (ATS)
- Summarize the results of the last effort
- lab testing effort on Identify the opportunities for future research presented at the conclusion of the last study
- Describe the vision of PG&E's Upgraded Hot Water Technology Performance Laboratory
- Identify how PG&E's laboratory will be modified to support of commercial kitchen field performance characterization research

PG&E Applied Technology Services (ATS)

Vibration Analyses

End use Equipment Testing

Non-Destructive Examination

- Multidisciplinary team of Engineers, Technologists, Technicians and Scientists
- Act as an internal PG&E consultant, also perform some 3rd Party work

History of Hot Water Testing at ATS – Residential Water Heater Testing

• Started off supporting the development of ASHRAE standards

Residential Hot Water Draw Simulation – Flow Measurement and Control

Residential Lab Hot Water Draw Simulation – Flow Measurement and Control (Staged Volume Draws)

. Valves

Field Characterization of Restaurant Hot Water Use (Completed by Fisher Nickel - FSTC)

Time	3-Comp Sink	Mop Sink	Hand Sinks	Lavatories	24hr Total
Gallons	322.0	<mark>60.8</mark>	62.1	55.4	500.37
# of Draws	1793	810	1258	1161	5022.00
Average GPM	2.16	0.90	0.59	0.57	

 Fisher-Nickel conducted field monitoring at a quick service restaurant to gather a high resolution 24-hour "real world" hot water use profile

PG&E Applied Technology Services Commercial Water Heater Laboratory Configuration

PG&E installed and fully instrumented and functional replication of the hot water system monitored in the field study. Tested various retrofit and RCx Pacific Gas and measures.

PG&E Applied Technology Services Commercial Water Heater Laboratory Configuration (cont'd)

Commercial and Residential Testing in same lab space

Measuring Commercial Hot Water System Performance: System Delivery Efficiency vs. WH Thermal Efficiency

Measuring Commercial Water Heater System Performance: System Delivery Efficiency vs. WH Thermal Efficiency

Heater 3:	High Effici	iency Tank	(les s				
	QSR	Profile Te	st - With R	ecirculatio	n		
Summar	y of Test Results			Test in	for mation		
Hermali sed Celivery Officiency:		64.78%	Test IO:		342321492		
Non-Normalized Dr	site metallitä seevile	80.626		Test Start:	331221312:03		
Total Gratam Gearar Insut Stat:		216.763	Text in di		41.2019 12:00		
Total System Energy Culout Stat:		15 L 122	Test Guralise Bret		24		
		PP.145					
System Energy Input				_			_
ide apprendent Parameter	Q.e	tr.	61	Q15	H	6 .	Tatal losat
Laite	6et. 10	10 Co 10	un liere	64. 60		Anna Wallin	
Revel Value	211.2	2,392	1222	37.6	1224	2712	216763
Water Heater Operating Condit	tions						
(de acorement Parameter	ĸ	84	81	0 eller	inist Water		
U alta		P	1	P	Emergy (Eim)		
See Value Curing Cracy	1,222	122.0	1222	67.A	然 18月3		
OSR Profile Flow							
Fishers	Hand Sink	3 Ceans Bink	úlse fink	Lavalaer	TOTAL		
Figurate at Fisture to ord	3A1	1.89	3.62	3.63			
Gallan a Dalbearad	42.4	22:2	27	49.2	222		
Consily at idear linisali	9,21	9,18	6,13	8.55			
Water Colivered III:	28	1874	223	187	35 M. S		
Energy Delivered to Fixtures							
F Istara	Hand Sink	3 Cente filmin	istere filmis	Lavainer	Tetal		
Succely Temperature 17	125.2		1258	121.4	berevie 0		
Teo Temperature 17	128.A	122.9	122.8	121.7	General Stati		
General Colivered per Fisture X	1492) 1492)	265617	43997	492 19	BBR		

Energy Performance Impact Summary: Standard Efficiency Tank-Type Water Heater - RCx and Retrofit Measures

Energy Performance Impact: Stratification in High Efficiency Tank-Type Water Heater – Standby Loss & T.E.

Energy Performance Impact: Stratification in Standard Efficiency Tank-Type Water Heater – Standby Loss & T.E.

Standby Loss - 2.58% - 1654.0 (Btu/h)

14

Opportunities for Future Research – Distribution System Scenarios – PG&E CHWH

Distribution System Scenarios

Simple Distribution (Quick Service): 100' supply to lavatory sink stub out, no return.

Standard Recirculation (Quick Service): 94' supply + 56' return = 150' total.

Standard Recirculation (Full Service): 108' supply + 92' return = 200' total.

Hybrid System (Full Service): Shortened Recirculation at mop sink with point-of-use electric heating at lavatory sink. 84' supply + 47' return = 131' total.

Demand Circulation (Quick Service): 114' supply + 56' cold water return = 170' total.

Extended Recirculation (Quick Service): 100' supply to stub out + 62' return = 162' total.

Standard Recirculation (Quick Service) = 150ft

PG&E Applied Technology Services Hot Water Technology Laboratory Vision

Vision for PG&E's Upgraded Hot Water Technology Laboratory

- Include capabilities of past residential and commercial test systems
- Employ modular laboratory design, easily adaptable to changing test setups, specifically distribution system
- Design instrumentation plan and DAS system for versatility
- Automation of tests via National Instruments Labview DAS
- Continued focus maintaining high instrument accuracy and control of test variables
- Rely on industry for guidance and new ideas, also attempt to develop our own

PG&E Applied Technology Services Implementing the Hot Water Technology Laboratory Vision

Regulating City Water Pressure

Conditioning City Water - Tempering System

Conditioning City Water - Tempering System

Distribution System – Piping Rack

Hot Water Draw Simulation – Flow Measurement and Control (Constant, Staged and Variable Volume)

Hot Water Draw Simulation – Flow Measurement

and Control (Constant, Staged and Variable Volume)

*ATS Likely to add additional end uses

Hot Water Draw Simulation – Flow Measurement and Control (Constant Volume Draws)

"Larger" Pressure Compensating Valve

"Smaller" Pressure Compensating Valve

Volumetric Flow between .2 – 3.0 gpm (smaller valves) .7 – 20 (larger valves)⁴

Hot Water Draw Simulation – Flow Measurement and Control (Variable Volume Draws) (Not Implemented Yet)

Temperature Measurement and Calibration

4-wire RTD's Almost Exclusively Used

Isothermal Block for Temperature Calibration

Pressure Measurement and Calibration

Rosemount Pressure Transmitters for Natural Gas Flow Compensation

*Omega pressure transmitters purchased for measuring pressure drop in piping network

Dead Weight Tester – Calibration Standard

Flow Measurement and Calibration

Diaphragm Meter w/ Pulsing Transmitter

Coriolis Flow Meter

Nutating Disc Hot Water Meter

Coriolis Flow Calibration Standard

Opportunities for Future Research – Account for Human Factors

Accounting for Human Factors – Temperature Feedback and Min Temperature Criteria

 Force solenoid value to remain open until water reaches specified temperature, and for a specified duration/volume

Build Baseline and Optimized Distribution System on Rack

- Run Tests using each of the following
 - (2) Standard Efficiency Tankless Units (199,000 Btuh ea)
 - (1) Condensing Tankless (250,000 Btuh)
 - (1) Standard Efficiency Tank (199,000 Btuh)
 - (1) Condensing Tank (199,000 Btuh)
 - If possible, vary recirc return port location (upper/lower)
- Add insulation, program timeclock, aquastat, D'mand circulation, modify drop dimensions
- Run a variety of flow profiles if time permits

Thank You

Questions?

EMHk@pge.com

