

Grid-Integrated Water Heating for the Multi-Family Sector

ACEEE Water Heat Forum February 22, 2016

Jim Lazar, Senior Advisor

The Regulatory Assistance Project

50 State Street, Suite 3 Montpelier, VT 05602 Phone: 802-223-8199 www.raponline.org

Context: Strategy 4 **Teaching the Duck to Fly**

Targeted energy efficiency

Peak-oriented renewables

Water pumping

Water heating

Air conditioning

- Rate design
- Battery storage
- Demand Response
- Inter-regional power exchanges
- Retire older inflexible generating units

Teaching the Duck to Fly

Requesting Permission for Take-Off

Overview

- Why Multi-Family?
- Magnitude of the Opportunity
- Maui as a Laboratory
- NOT addressing fast-response ancillary services.

- Larger report on Low-Cost Storage
 - Water Heating
 - Ice-storage airconditioning
 - Water pumping controls
- Forthcoming 2nd
 Quarter 2016

41% Electric Water Heat Saturation

Most Apartments Have Electric Water Heaters

Magnitude of the Potential

- 45 million electric water heaters
 - 12 million in multifamily
 - ~3,800 kWh/year/water heater in single-family
 - ~2,600 kWh/year in multi-family
- ~36 TWh/year

Why Multi-Family

Fewer Options

- Gas: No gaspiping andventing
- Solar: Cold water only plumbing
- HPWH: Space limitations; indoor installs

Why Multi-Family

- Access and Crew Efficiency
- Communications and Controls
- Renters with few money-saving options

Why Multi-Family

52 gallon tank= 24 hours storage

Lowe's

Illustrative Deployment: Maui

- Maui Electric
 - 68,000 customers
 - − ~200 MW peak
 - 1.2 TWh total sales
 - 62 MW wind
 - -50 MW PV

Low-Rise Tourist Condos

How Big Is The Potential Fleet?

THEHAWAIISTATECONDOGUIDE.COM Home County Zoning Links Hawaii TaxMaps.com Kauai Oahu Molokai Maui Lanai Hawaii

	Total	Estimated
	Condos	Low-Rise
Honokowai / Kapalua	4,352	3,348
Kaanapali / Lahaina	5,016	2,523
North Kihei / Maalaea	3,776	3,228
South Kihei / Wailea	4,442	3,885
Total:	17,586	12,984

Maui's Challenge #1: Wind Curtailment

- 28 GWh of wind rejected
- 10% of total wind energy

Maui: Fast Response Is Valuable

Table 3: Net Benefits Summary (\$ per Customer per Year)

Water Heater	Strategy	PJM East (2014)	MISO (2014)	MISO (2028)
ERWH 50-gal	Peak Shaving	13	-15	29
	Thermal Storage	15	-20	25
	Fast Response	162	39	195

Brattle/NRECA/NRDC/PLMA 2016

Maui:

13,000 MF water heaters potential 6,300: needed for frequency control for wind (MECO DR Report, P. 64)

Maui's Challenge #2: Mid-Day Solar Bulge

When Do People Use Hot Water?

Source: Steffes Energy

Hawaii Water Use Is Evening-Peaking

Figure 11. RDLC water heater program load shed statistics, 2013

Hawaii Hot Water Use is Lower

Multi-Family Daily Use is Within Capacity of a 52 Gallon Tank

Daily Usage:5.33 kWh

52 Gallon Tank
Capacity:
7.92 kWh
@ 140° Max &
75° inlet water temp.

Evening Peak Water Use in Hawaii Matches Post-Solar Day Challenge

Reduce Charging: 6 – 10 AM; 4 – 10 PM Increase Charging at Other Hours

Charging Occurs Mid-Day and Mid-Nite

Paul Steffes Slide: Smooth the Ramps

Power Request (Green) – Ramps UP or DOWN based on need

Measured Power (Dark Blue) – Confirms high-accuracy

following in real-time

We Only Use Half The Available Storage

Net Shifts Per Water Heater kWh/day per Water Heater

		Before	After	Change
Night Usa	age	0.84	3.04	2.20
Peak Usa	ige	3.32	-	(3.32)
Solar Bulge Usage		1.17	2.29	1.12
Total:		5.33	5.33	

Shiftable Water Heat Load as % of Wind Curtailment

		Increased	
	2015	Night WH	% of
	Curtailment	Load	Curtailment
Jan	600	846	141%
Feb	1,100	764	69%
Mar	1,700	846	50%
Apr	4,400	818	19%
May	4,900	846	17%
Jun	2,400	818	34%
July	800	846	106%
Aug	1,100	846	77%
Sep	2,900	818	28%
Oct	1,500	846	56%
Nov	3,800	818	22%
Dec	3,400	846	25%
Annual	28,600	9,956	35%

Shiftable Water Heat Load As % of Mid-Day Solar Bulge

	Tatal	NI_1	Deviation From	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0/
	Total	Net	Average	WH Shift	%
10	150	120	(11.2)	2.5	22%
11	150	117	(14.2)	2.5	17%
12	150	115	(16.2)	2.5	15%
13	150	117	(14.2)	2.5	17%
14	155	120	(11.2)	2.5	22%

Shiftable Water Heat Load as % of Evening Peak

	Total	Net	Deviation From Average	WH Shift	%
16	165	140	8.8	(3.1)	35%
17	170	160	28.8	(3.1)	11%
18	175	175	43.8	(4.3)	10%
19	185	185	53.8	(4.3)	8%
20	180	180	48.8	(4.3)	9%
21	165	165	33.8	(4.3)	13%
22	150	150	18.8	(3.7)	20%

Effect on Net Load

What About Standby Losses?

Higher Delta-T means higher losses.

EF .95 Tank:

- 5% losses @ 120F
- 7% losses @ 140F
 - Cost of about 2% in annual kWh at meter
- BUT: Lower Distribution Line Losses
 - Uncontrolled: 41% on-peak
 - − Controlled: ~0% on-peak
 - **Savings** of about 3% on underlying line losses.

This Only Addresses Part of the GIWH Benefit Stream

Figure ES-1: Annualized Net Benefits of Water Heating Strategies (PJM 2014)

No attempt to quantify the fast response value. It should be a part of the value proposition.

Brattle/NRECA/NRDC/PLMA 2016

Summary

- Multi-family electric water heaters will remain commonplace.
- 55 gallon DOE limit not a factor
- Savings per water heater are relatively small.
- Efficiencies of deployment and control are very good.
- Fast response is needed, and is valuable.
- Potential value is very high.

About RAP

The Regulatory Assistance Project (RAP) is a global, non-profit team of experts that focuses on the long-term economic and environmental sustainability of the power and natural gas sectors. RAP has deep expertise in regulatory and market policies that:

- Promote economic efficiency
- Protect the environment
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at www.raponline.org

jlazar@raponline.org

The Regulatory Assistance Project

Beijing, China • Berlin, Germany • Brussels, Belgium • **Montpelier, Vermont USA** • New Delhi, India 50 State Street, Suite 3 • **Montpelier, VT** 05602 • *phone:* +1 802-223-8199 • *fax:* +1 802-223-8172