

Membrane-based Absorption Heat Pump Water Heaters

Saeed Moghaddam Nanostructured Energy Systems (NES) Laboratories University of Florida

> ACEEE Hot Water Forum February 21-23, 2016 Portland, OR

Outline

- Motivation
- Operation principle
 - Closed & open absorption cycle water heaters
- Membrane-based absorption cycle
 - Theory and experiments
 - Preliminary system level tests
- Ionic liquids (ILs) for absorption cycles
 - Unique properties and prospects

> Summary

Motivation

$> \sim 50\%$ of the water heaters shipped are gas-fired

Residential	2009	2010	
Gas Storage (Total)	3,760,657	3,918,510	
Not E* 17	3,110,419	3,463,780	
E*-qualifying ¹⁸	650,238	454,730	
Gas Tankless (Total) ¹⁹	380,000	399,000 ²⁰	
Not E*	46,987	14,974	
E*-qualifying	333,013	384,026	
Electric Storage (Total)	3,751,994	3,736,597	
Not E* ²¹	3,737,260	3,677,472	
E*-qualifying (heat pump) ²²	14,734	59,125	
Solar ²³	31,647	33,462	
Not E*	24,751	23,472	
E*-qualifying	6,896	9,990	
TOTAL	7,924,298	8,087,569	
Total Not E*	6,919,417	7,179,698	
Total E* qualifying	1,004,881	907,871	

Research and Development Roadmap for Water Heating Technologies, Navigant, 2011

Operation Principle of an Absorption Cycle

Potential Application of Open System

- An open cycle can be substantially cheaper than a closed cycle
- Applicable to 3 zones, encompassing 54% of US homes

Environment	Ambient RH and Temperature	Thermal COP	Ambient Dew Point
Cold humid basement	6 [°] C, 80% RH	1.54	2.82
Humid open space	35 [°] C, 70% RH	1.72	28.7
Air-conditioned closed space	23 [°] C, 50% RH	1.63	12.06

Applicable in Buildings with Fresh Air Requirement

Latent heat (i.e. heat of moisture) is the primary air ventilation load for much of the US (east, south, north, mid-west, north-west, and Islands)

Fig. 2: Cumulative dehumidification and cooling loads from ventilation air for selected locations in the United States.

Benefits of a membrane-based absorption cycle

Membrane-based Closed Absorption System

Membrane-based Open Absorption System

Science of membrane-based absorption process

Absorber Heat Exchanger

Control factors in absorption rate:

Film thickness: *h*; solution velocity **v** Cooling water temperature T_c

Membrane-based Absorber vs. Current Absorbers: Fundamental Physics

Effect of Film Thickness and Velocity on Absorption Rate

• Better cooling of the solution/vapor interface

Reduced mass transfer resistance

2nd Generation Absorber

- Use a thick liquid layer to reduce the pressure drop
- Chaotic mixing of the solution flow
 - Overcome diffusion limitations
- Using surface microstructures to generate vortices

2nd Generation Absorber

Experimental Equipment

1st Generation Absorber

1st Generation Absorber

Nasr and Moghaddam, Int. J. Heat Mass Transfer, 2013

2nd Generation Absorber

Comparison of 1st and 2nd Generations Pressure Drop

3rd Generation Absorber

Systems level testing

1st Generation Closed System

- Test conditions:
 - $T_{supl-evap}$ =12 ° C
 - T_{supl-abs}=25 ° C
 - COP_{heating}=1.7
- Highly unstable
- Identified the source of instability
- 2nd generation has been fabricated
- Tests on the new system will be conducted soon

1st Generation Open Architecture Water Heater

1st Generation Open Architecture Water Heater

Performance Data of Open Architecture Water Heater

2nd Generation Open Architecture Water Heater

Experimental Loop

- Fully instrumented air conditioning system
- With control on temperature and humidity

Ionic liquids

New Opportunities with Ionic Liquids (ILs)

- Crystallization issue is addressed
- Less corrosive than the LiBr solution
- Low vapor pressure at high absorber temperature
- Environment friendly (green liquids!)

Preliminary Experimental Results (closed system)

Momentum, Energy and Concentration: $\rho u_j u_{i,j} = -p_{,i} + \mu u_{i,jj}$ $u_j T_{,j} = \alpha T_{,jj}$ $u_j X_{,j} = D X_{,jj}$

Dusty-Gas model to calculate the vapor flow rate through the membrane pores:

$$J = k_m \left(P_v - P_{s,w} \right)$$

$$k_m = -\left(M / \delta_m \right) \left[D_e^k / (RT) + PB_0 / (RT \mu) \right]$$

Numerical Analysis

Conclusions

- Absorption systems can be transformed into compact, light, and inexpensive configurations
 - 2nd generation closed LiBr system is fabricated and will be tested soon
 - 2nd generation open system with an ionic liquid is fabricated and currently being tested
- Ionic liquids enable overcoming the traditional operation limits of absorption cycles
 - Avoid crystallization
 - Robust and low cost system
 - High water output temperature

Acknowledgements

Thank you

Publications and Patents

Publications

- S. Bigham, R. Nasr Isfahani, and S. Moghaddam, "Direct Molecular Diffusion and Micro-mixing for Rapid Dewatering of LiBr Solution," Applied Thermal Engineering, vol. 64, pp. 371-375, 2014.
- R. Nasr Isfahani, A. Fazeli, S. Bigham, and S. Moghaddam, "Physics of Lithium Bromide (LiBr) Solution Dewatering Through Vapor Venting Membranes," International Journal of Multiphase Flow, vol. 58, pp. 27-38, 2014.
- S. Bigham, D. Yu, D. Chugh, and S. Moghaddam, "Moving Beyond the Limits of Mass Transport in Liquid Absorbent Microfilms through the Implementation of Surface-Induced Vortices," Energy, vol. 65, pp. 621-630, 2014.
- R. Nasr Isfahani, K. Sampath, and S. Moghaddam, "Nanofibrous Membrane-based Absorption Refrigeration System," International Journal of Refrigeration, vol. 36, pp. 2297-2307, 2013.
- R. Nasr Isfahani and S. Moghaddam, "Absorption Characteristics of Lithium Bromide (LiBr) Solution Constrained by Superhydrophobic Nanofibrous Structures," International Journal of Heat and Mass Transfer, vol. 63 (5-6), pp. 82-90, 2013.
- D. Yu, J. Chung, and S. Moghaddam, "Parametric Study of Water Vapor Absorption into a Constrained Thin Film of Lithium Bromide Solution," International Journal of Heat and Mass Transfer, vol. 55 (21-22), pp. 5687-5695, 2012.

Patents

- S. Moghaddam, D. Chugh, R. Nasr Isfahani, S. Bigham, A. Fazeli, D. Yu, M. Mortazavi, and O. Abdelaziz, Open Absorption Cycle for Combined Dehumidification, Water Heating, and Evaporating Cooling, Patent Application UF-14820, 2013.
- S. Moghaddam and D. Chugh, Novel Architecture for Absorption-based Heaters, Patent Application UF-14697, 2013.
- S. Moghaddam, Thin Film-based Compact Absorption Cooling System, WO Patent 2,013,063,210, 2013.
- S. Moghaddam, D. Chugh, S. Bigham, 3D Microstructures for rapid Absorption and Desorption in Mechanically Constrained Liquid Absorbents, UF Patent#14936, 2013

Energy Factor (EF)

Projected system EF (water heating) based on absorption cycle test results

Cycle Analysis

Latent vs. Sensible Heat Load

Buildings latent heat significantly exceeds the sensible heat load in hot-humid climates

In Miami, the latent load exceeds the sensible load by 6.7:1

✓ Regional solutions

Humidity Control Challenges in Residential Buildings

From: Armin Rudd, Residential Humidity Control Strategies, Residential Energy Efficiency Stakeholder Meeting, Austin TX, February 2012

Improvement of Air Distribution

Humidity Control Challenges in Residential Buildings (cont.)

From: Armin Rudd, Residential Humidity Control Strategies, Residential Energy Efficiency Stakeholder Meeting, Austin TX, February 2012

Experimental Loop

Water Heater Configuration

