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Motivation

» ~50% of the water heaters shipped are gas-fired

Residential 2009 2010
Gas Storage (Total) 3,760,657 ’ \iiﬁf?ﬂ\,
Not E* 17 3,110,419 3,463,780
E*-qualifying 18 650,238 454,730
Gas Tankless (Total)"? 380,000 399,000%
Not E* 46,967 14,974
E*-qualifying 333,013 384,026
Electric Storage (Total) 3,751,994 f\?,l?ﬁ;ﬁ-ﬁi\,
Not E* 21 3,737,260 3,677,472
E*-qualifying (heat pump)2 14,734 99,125
Solar 8 31,647 33,462
Not E* 24,751 23,472
E*-qualifying 6,896 9,990
TOTAL 7,924,298 8,087,569
Total Not E* 6,919,417 7,179,698
Total E* qualifying 1,004,881 907,671

Research and Development Roadmap for Water Heating Technologies, Navigant, 2011



Operation Principle of an Absorption Cycle
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Potential Application of Open System

» An open cycle can be ¥ B
substantially  cheaper " / ] ecs {/
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Ambient RH and Thermal COP Ambient Dew

Environment

Temperature Point
Cold humid basement 6 °C, 80% RH 1.54 2.82
Humid open space 35°C, 70% RH 1.72 28.7

Air-conditioned closed space 23 'C, 50% RH 1.63 12.06




Applicable in Buildings with Fresh Air
Requirement

» Latent heat (i.e. heat of moisture) is the primary air
ventilation load for much of the US (east, south, north,
mid-west, north-west, and Islands)

e Cumulative Dehumidification & Cooling Loads
Bastan u from Ventilation Air
Detck Latent + Sensible Ton-Hours per scfm per year |
Minneapoiis [
Pittsturgh =
Mew York :
Chi -
Ls:?;:as B Latent ton-hrs per scim per year
Indianapolis T [ sensible ton-hrs per scim per year
Lexington i
Colorado Spr. ==
Cmaha
Phoerix ] I
St. Louis ==

== Oiclahoma City

Richmand

Raleigh =]

Atlanta |

Nashwille =]

— Little Rock o

i Crarleston

San Antonio
[
5

JE—
Mew Orleans
Miami

— |
] |
10 15 20 25

—

Fig. 2: Cumulative dehumidification and cooling loads from
ventilation air for selected locations in the United States.




Benefits of a membrane-based absorption
cycle



Membrane-based Closed Absorption System

Transform)




Membrane-based Open Absorption System

3D model of the
absorber




Science of membrane-based absorption
process



Absorber Heat Exchanger

Solution

Tube
surface

Vapor

Cooling water

Control factors in absorption rate:

Film thickness: /; solution velocity v
Cooling water temperature T.




Membrane-based Absorber vs. Current
Absorbers: Fundamental Physics

Conventional

LiBr-water
falling film

Water
absorption

- Hydrodynamics of the falling film over
the tubes dictates the film thickness

» Film thickness is not optimal for
maximum absorption

» Flow velocity is coupled with the film
thickness

Membrane-based

Water Vapor

RN

- Utilize thin absorbent films
constrained by highly permeable
membranes

» Enables independent control over the
film thickness and velocity

» Enables fabrication of compact plate-
and-frame absorbers




Effect of Film Thickness and Velocity on
Absorption Rate

« Better cooling of the solution/vapor interface

Water Vapor Heat of
Phase Change Water Vapor Heat of
Phase Change
_ ————————————
Cooling Surface Cooling Surface

* Reduced mass transfer resistance
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2nd Generation Absorber
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— Overcome diffusion limitations 700 rm

. - A. D. Stroock et al., Science, 2002
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2nd Generation Absorber

With mixing
Scaled by a

factor of 100 in
the x-direction

.53 b4 b5 be 57 .58 .69 6

Without mixing

0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6




Experimental Equipment

‘“-4..(-—-—-—;,

'\ Solution pre-heater




1st Generation Absorber

Inlet port Inlet manifold

Water vapor Outletmanifold Outletport
Membrane

Cooling water Cooling water )
Solution = outlet / inlet L Solution
inlet ﬁ ﬂ ﬁ ﬂ outlet
Thermocouple Li-Br Solution
Cooling water wires microchannels

microchannels



1st Generation Absorber
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2nd Generation Absorber
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Comparison of 18t and 29 Generations

Pressure Drop

120

100

(®)) o
(@) o

AP/L (kPa/m)

N
o

20

— =£]-= - lIsfahani and Moghaddam (2013)/ 100 pum film
- — ->— - lIsfahani and Moghaddam (2013)/ 160 um film
- @- - 500 um film with ridges
/
o Vs
] /
e m 7/
7
Ny /
I 7/
- ’
L/ y
! ’
! s
’
= m ,
1 /
0 ,
— éf

&

055 6.02I 0.03

+ -0 -~ @9-@- -9~

rhchannel (kg/hr)

0.04 0.05 0.06 0.07 0.0¢



34 Generation Absorber
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Systems level testing



1t Generation Closed System

» Test conditions:
- T =12° C

supl-evap

B Tsupl-abs=25° C
=1.7

B COPheating
» Highly unstable

o— — > |dentified the source of

B instability
R e D » 2"d generation has
go AMEIETEE N been fabricated
RSUEIRIE R R

S
BP0 I 5 ;" ! » Tests on the new
F ‘ h’;‘s system will be
T wm w awo o conducted soon




18t Generation Open Architecture \Water
Heater
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18t Generation Open Architecture \Water
Heater




Performance Data of Open Architecture
Water Heater
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24 Generation Open Architecture
Water Heater




Experimental Loop

» Fully instrumented air conditioning system
» With control on temperature and humidity




lonic liquids



New Opportunities with lonic Liquids (ILs)

» Crystallization issue is addressed

» Less corrosive than the LiBr solution

» Low vapor pressure at high absorber temperature
» Environment friendly (green liquids!)
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Preliminary Experimental Results
(closed system)
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Numerical Analysis
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Conclusions

» Absorption systems can be transformed into

compact, light, and inexpensive configurations

— 2" generation closed LiBr system is fabricated and will be tested
soon

— 2" generation open system with an ionic liquid is fabricated and
currently being tested

» lonic liquids enable overcoming the traditional

operation limits of absorption cycles
— Auvoid crystallization

* Robust and low cost system

* High water output temperature
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Energy Factor (EF)

» Projected system EF (water heating) based on absorption
cycle test results
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Cycle Analysis
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Latent vs. Sensible Heat Load

» Buildings latent heat significantly exceeds the sensible heat
load Iin hot-humid climates

Columbus, Ohio Atlanta, Georgla Orlando, Florida

In Miami, the latent load exceeds the sensible load by 6.7:1

v Regional solutions



Humidity Control Challenges in Residential
Buildings

Monthly Average Outdoor Dewpoint Temperature
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From: Armin Rudd, Residential Humidity Control Strategies, Residential
Energy Efficiency Stakeholder Meeting, Austin TX, February 2012



Improvement of Air Distribution

Previous duct design Improved air distribution

41



Humidity Control Challenges in Residential
Buildings (cont.)

Moisture load for cooling and dehumidification systems
in humid climates (75 F/55% RH indoor, 75 F outdoor dewpt)

Moisture Load (lb water/day)
0 10 20 30 40 50 60 70 80 90 100 110 120
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B Airexchange

OPeople
O Cooking

0.25 ach infiltration

B Dishwashing
B Bathing

O Clothes washing

0.1 ach infiltration
with 50 cfm
ventilation

B Floor mopping

O Building envelope

B New const drying
|

From: Armin Rudd, Residential Humidity Control Strategies, Residential
Energy Efficiency Stakeholder Meeting, Austin TX, February 2012



Experimental Loop




Water Heater Configuration

Hot side
(desorber,
burner, oil loop,
solution HX)—__

Cool side
(absorber, fans,
solution pump)—__




