2016/02/23

Hot Water Recirculation Controls in Hospitality and Commercial Buildings

Characterization and Potential

Ben Schoenbauer

Senior Research Engineer

Acknowledgements

 These projects are supported in part by grants from the Minnesota Department of Commerce, Division of Energy Resources through a Conservation Applied Research and Development (CARD) program

CEE Project Scope

- Phase 1: Characterization on DHW systems in Hospitality and Commercial Buildings [Complete]
 - Survey Systems
 - Monitoring and measurement in a subset of buildings

 Phase 2: Install Recirculation Controllers in at least 6 Buildings [Future work]

- Recirculation pumps controllers by building automation systems or timers to turn off in periods of low use
- Has the potential to increase hot water wait times when in an off period

- Controller measures real time loop temperature and hot water usage
- Uses both temperature and demand data to reduce runtime without impacting hot water delivery
- Reduces pumping costs and thermal loses from recirculation loops through reduced pump runtime

General Overview of Buildings

- 4.6 million commercial building in USA
- Exclude any buildings with less than 5,000 sq ft
- Of those buildings:
 - 75% have domestic hot water systems
 - 77% of buildings with DHW have some centralized system
 - 1.4 million buildings with centralized DHW systems

Hospitality

- All surveyed and monitored systems were on 24/7
 - One aqua stat installed, but set temperature too high to actually turn off pump
- Five stories and less had "simple" systems with <3/4 HP pumps
- Larger buildings more complex systems
 - Booster pumps
 - More loops
- Top priority occupant satisfaction

- Most systems (~66%) had time of day controls
- On average systems ran for 18.75 hours per day
 - One systems was shut down completely during summer months
- Most uses are small and concentrated
- Large variety of fixture uses
 - Locker facilities
 - Bathrooms
 - Dining/Kitchen
 - Classrooms

Commercial Buildings

- Half of systems had time of day controls
- On average systems ran for 16 hours per day when controlled
 - Several buildings with time of day controllers mentioned that they were adjusted or disabled due to early/late workers
- Large variety of systems
 - Buildings were older or had changing use
 - Multiple loops from same source were more common

Current System Operation

- Constant circulation, higher water temperatures, and large capacity systems kept loop temperatures very consistent
- The average temperature drop in the loop was 15 °F in idle periods
 - Even in small buildings temp drops reach 30F in some cases
 - In many cases these losses required higher set temperatures

Pg. 10

- In about 1/3 of the measured systems return water temperatures were higher than 125F
- Loop loses expected to be 10% to 30% of total use

- 10% to 30% reduction in hot water thermal energy use
- Up to 95% reduction in pump energy
- Lengthen the lifetime of valves, pipes, and pumps
 - Was seen as the biggest benefit by several building facility managers

Pg. 12

Complexity for Installations

- Secondary recirculation loops
- Penthouse suites in large buildings
- Interactions on systems with multiple loops on sharing a heating source

Ben Schoenbauer

bschoenbauer@mncee.org

