

Multifamily Ventilation and IAQ A Market-level Assessment of Standard and Best Practices

Marian D. Goebes, PhD

TRC – Research and Technology Commercialization Group

December 4, 2018

Presented at the 2018 Conference on Health, Environment and Energy

Overview

Multifamily ventilation and IAQ needs

- 1. Dwelling unit ventilation
- 2. Compartmentalization
- 3. Filtration

For each, discuss:

- What is it and why is it needed?
- Standard practices
 - International Energy Conservation Code (IECC), adopted in most states
 - Am. Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62.2, adopted by many programs and CA
- Best practices

Spotlight: San Francisco ordinance as best practice

For time constraints: Focus on new construction

 Dwelling unit ventilation = providing fresh (outdoor) air to each unit to dilute indoor pollutants

- Historically, MF units ventilated with infiltration and operable windows
- In past decade, codes moved to requiring mechanical ventilation
 - Buildings being constructed more tightly, so less infiltration
 - Offerman (2010) study of 108 homes found occupants don't open windows regularly

- Exhaust-only
 - Local exhaust fan(s) runs continuously
 - Make-up (supply air) theoretically comes from infiltration or passive vents
- Supply-only:
 - Fan provides supply air into unit
- Balanced:
 - Fan provides supply air into unit, and exhaust fan removes air from unit at same rate

- Exhaust-only:
 - Local exhaust fan(s) runs continuously
 - Make-up air theoretically comes from infiltration or passive vents
- Supply-only:
 - Fan provides supply air into unit
- Balanced:
 - Fan provides supply air into unit, and exhaust fan removes air from unit at same rate

- Exhaust-only:
 - Local exhaust fan(s) runs continuously or scheduled intermittently
 - Make-up (supply air) theoretically comes from infiltration or passive vents
- Supply-only:
 - Fan provides supply air into unit
- Balanced:
 - Fan provides supply air into unit, and exhaust fan removes air from unit at same rate

- Exhaust-only:
 - Local exhaust fan(s) runs continuously or scheduled intermittently
 - Make-up (supply air) theoretically comes from infiltration or passive vents
- Supply-only:
 - Fan provides supply air into unit
- Balanced:
 - Fan provides supply air into unit, and exhaust fan removes air at same rate

Dwelling Unit Ventilation: Standard Practice

• Exhaust-only most common in MF

• Concerns with exhaust-only

- Insufficient supply air (CARB 2015: 13-36% through passive vents)
- Some "fresh air" likely transfer air from neighboring units
- Occupants often cover up passive vents

Dwelling Unit Ventilation: Best Practice

- Require balanced or supply-only
- Example code: Minnesota requires balanced ventilation for all new MF
- Designs include:
 - Central ventilation, ducted to each unit
 - Heat or Energy Recovery Ventilator (HRV or ERV)
- Additional cost: ~\$1000/unit (based on individual ERV)

Compartmentalization:Why?

- Compartmentalization = sealing each dwelling unit from exterior, neighboring units, and all other interior spaces
- Reduce pollutant transfer between units

Compartmentalization: Standard Practices

- IECC-2018 has tightness requirement, but can be met at whole building or individual unit level
 - Exterior envelope could be tight, with little sealing between units -> air transfer

- Better practice:
 - ASHRAE 62.2-2019 will require ≤0.3 cfm50/sf at individual unit level
 - About \$290 per unit for sealing and testing

Compartmentalization: Best Practice

- LEED for Homes Midrise Multifamily requires ≤0.23 cfm50/sf
- Best practice implementation:
 - Careful job with traditional caulking and sealing
 - Aerosolization:
 - Pressurize unit
 - Release small particles of sealant
 - Sealant particles build up, sealing cracks
 - ~\$500/unit for sealing to 0.23 cfm50/sf and testing

Sealed Air Leaks using Aerosolization (Source: Western Cooling Efficiency Council

Filtration: Why, and Standard Practice

- Filter supply air through HVAC system
- Why?
 - Remove particulate matter (PM), especially smaller particles (PM2.5)
 - PM2.5 causes asthma, respiratory problems, and cardiovascular disease
- Filters with higher Minimum Effectiveness Reporting Value (MERV) remove larger fraction of PM2.5
- Standard practice
 - MERV 6-8, required in IECC and ASHRAE 62.2
 - Removes very little PM2.5

- Best practice: MERV 13 or higher
 - Removes ~70-85% of PM2.5
 - Incremental cost ~\$80, although it can limit equipment choices
- Best practice implementation
 - Thicker filters (≥ 2") to reduce static pressure for energy
 - Educate maintenance staff or tenants on replacing filters often

MERV 13

Best Practice: San Francisco Article 38

- Problem: Heavy development of MF buildings along freeway corridors
- People living within 500 feet of a freeway suffer higher rates of asthma, heart attacks, and pre-term births (Barboza, 2017)

Image from Barboza 2017, LA Times

Best Practice: San Francisco Article 38

 Residential new construction in high PM2.5 zones must use balanced or supply-only ventilation <u>and</u> MERV 13 filtration

Best Practice: San Francisco Article 38

"I knew the engineering community in the Bay Area was creative, but I didn't realize how creative."

- Jonathan Piakis, SF Dept of Public Health
- Implementation strategies have included:
 - Central supply air ducted to each unit
 - Individual ERVs or HRVs
 - Designers continue to devise various other methods

Summary

MF IAQ Need	Why?	Std Practice	Best Practice	Best Practice Implementation	Approx. Incremental Cost /unit
Dwelling unit ventilation	Buildings getting tighter	Exhaust- only	Balanced or supply-only	Central supply ducted to units, or individual ERVs/HRVs	~\$1,000
Compart- mentalization	Reduce pollutant transfer	None or little	0.23 cfm50/sf, individual unit level	Careful job with traditional sealants, or aerosolization	~\$500
Filtration	Reduce indoor PM2.5	MERV 6 - 8	MERV 13	Deeper filters, encourage maintenance	~\$80
Total					~\$1,580

Everyone – particularly policy makers – must push for these requirements. Otherwise, standard practices will continue. 18