

Compliant and Unhealthy: When an Older Code Meets Contemporary Construction Methods

ACEEE Conference on Health, Environment, and Energy

New Orleans, LA | December 3, 2018

About MEEA

The Trusted Source on Energy Efficiency

We are a nonprofit membership organization with 160+ members, including:

- Utilities
- Research institutions and advocacy organizations
- State and local governments
- Energy efficiency-related businesses

As the key resource and champion for energy efficiency in the Midwest, MEEA helps a diverse range of stakeholders understand and implement cost-effective energy efficiency strategies that provide economic and environmental benefits.

Energy Codes Overview

- National model codes are published every three years
 - Adopted and enforced by state or local jurisdictions
 - Most recent code is 2018 International Energy Conservation Code (IECC)
- Energy codes, like all building codes, establish minimum lifesafety requirements
 - Air Sealing
 - Blower door test
 - Ventilation
 - Windows and Doors
 - Insulation

Energy Codes Improving Efficiency

Envelope air sealing is a major driver in improved efficiency

Energy Codes Envelope Tightness

- Older codes (≤ 2009) relied on a leaky envelope to provide fresh air (visual inspections)
 - Location of "fresh air" intake is unknown
 - It could even be across dead (or undead) racoon in the crawl space?

- Newer codes (≥ 2012) require testing (blower door) to verify building tightness
 - Mechanical ventilation required below specified air leakage
 - Fresh air intake is from a know source/location

Energy Codes Blower Door Test

- Blower door tests determine envelope leakage
 - ANSI/RESNET/ICC 380
- Pressurizes (or depressurizes) home to 50 pascals (~20 mph wind)
- Code limits maximum Air Changes Per Hour (ACH50)
 - 2009 IECC, 7 ACH50
 - 2012 IECC, 3 ACH50*

* 5 ACH50 in climate zones 1 and 2

Questions Known Unknowns

- Since 2010, nearly 3 million homes have been constructed where visual air sealing inspection is allowed
- How do you know when mechanical ventilation is needed in a visually inspected home?
 - What is the envelope tightness of a visually inspected home?
 - Is proper ventilation installed in "tight" visually inspected homes?

DOE Residential Field Studies Data Collection

- In 2014 DOE funded three-year, three-phase residential baseline studies in 8 states
 - <u>https://www.energycodes.gov/complia</u> <u>nce/energy-code-field-studies</u>
- Phase 1 Baseline study
- Phase 2 Training and education
- Phase 3 Redo baseline study

DOE Residential Field Studies Data Collection

- Study was designed to give statistically significant results on new homes
 - Statewide random selection of homes
 - Including air sealing and ventilation data
- MEEA led the study in Kentucky
 - KY code (2009 IECC) allows visual inspection
- MEEA collected ~25,000 data points on new homes in KY

Phase 1 Data Methodology Overview

- Assume homes only get blower door tests for a HERS rating
 - HERS is a standardized rating of home energy consumption
- Determine % of KY HERS rated homes (2016)
 – 28% of homes rated

- Randomly remove HERS % of homes from dataset
- Determine % of remaining homes requiring mechanical ventilation (<5 ACH50)
- Determine if required ventilation was installed

Phase 1 Data (KY) Results

ACH50 of Visually Inspected Homes

Median	5.3
Average	5.7
Range	19.5
Maximum	20
Minimum	0.51
Standard Deviation	3.7
Sample Size	48
Number of homes < 5 ACH50	25
% Sample Size <5 ACH50	52 %
% Sample Size <5 ACH50 with Only Bath Fan Ventilation	82 %

ENERGY EFFICIENCY ALLIANCE

MIDWEST

Phase 1 Data Other States

State	AR	NC	ΡΑ	MO
Energy Code	2009 IECC	2012 IECC (amended out blower door testing)	2009 IECC	Home Rule (no statewide code)
% of homes <5 ACH50	43.86%	86.96%	72.73%	61.67%
% HERS rated homes	10.48%	30.67%	21.75%	5.53%

Phase 1 Data Average Results from 5 States

- Average % of homes with < 5 ACH50: 66.1%
- Average % of HERS rated homes in states studies: 19.22%
- Average % of bath fan only ventilation:
 88.1% (KY and MO)

Phase 3 Data (KY) Overview

- Phase 3 presented an **opportunity** to directly compare visual inspection and blower door results
- Second baseline study was conducted after completion of two year compliance improvement program (Phase 2)
- Same energy items surveyed on a new random set of homes
- New home efficiency markedly improved (25%) compared to Phase 1 homes

Phase 3 Data (KY) Methodology Overview

- Blower door tests were performed on all study homes
- Builders were asked if compliance was via visual inspection or blower door test
- Correlate visual inspection with blower door test results
- Determine % of homes requiring mechanical ventilation (<5 ACH50)
- Determine if required ventilation was installed

Phase 3 Data (KY) Results

ACH50 of Visually Inspected Homes

Median	4.3
Average	4.2
Range	5.0
Maximum	7.0
Minimum	2.0
Standard Deviation	1.6
Sample Size	23
Number of homes < 5 ACH50	17
% Sample Size <5 ACH50	74%
% Sample Size <5 ACH50 with Only Bath Fan Ventilation*	90%

*While all homes met code air sealing requirements, the % of under-ventilated homes actually increased from 82% to 90%

Phase 3 Data (KY) Results

Consequences Moisture

- Studies have found that improper ventilation causes increased moisture and mold in homes
 - Excess moisture can also damage structural components
- A separate MEEA study found that ~90% of new homes in KY and MO had oversized AC units (140% -160%)

 Oversized AC units meet cooling needs faster than they can remove moisture, called short cycling

Consequences Indoor Air Pollutants

- Building homes tight reduces the amount of air pollution entering the home
 - Assuming higher quality outside air
- Inadequate ventilation leads to higher levels of indoor air pollutants
 - Contributes to instances of asthma, allergies, COPD, headaches and fatigue

Conclusions

- This is potentially a (BIG) problem with significant health implications
 - Could affect 1.5 3 million homes nationwide
- Testing is important (and inexpensive)
 The only way to know envelope tightness
- Build tight, ventilate right
 - As this study showed, ventilation impacts are often overlooked when making energy improvements

Thank you!

Chris Burgess cburgess@mwalliance.org

Nicole Westfall nwestfall@mwalliance.org

