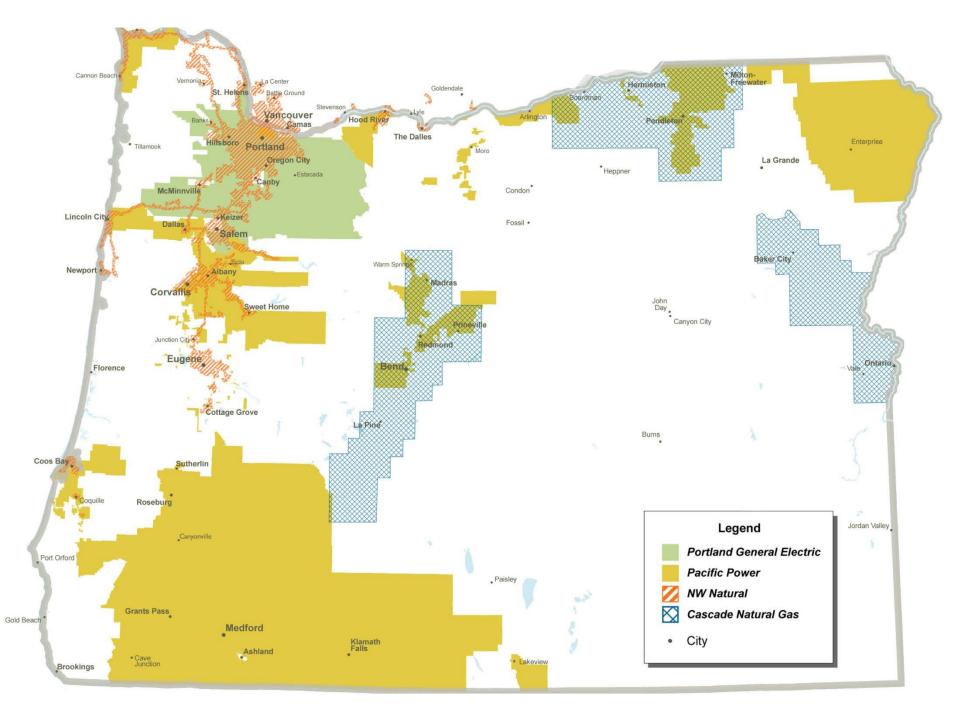
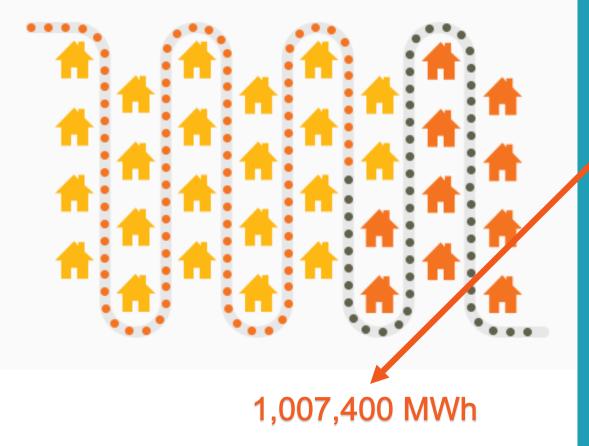


Energy Trust of Oregon Forecasting the Future: Quantifying Uncertainty in Emerging Technologies Sept. 21, 2015


Agenda

- About Energy Trust
- Defining the Problem
- Our Resource
 Assessment
- How We Do It
- Results
- Questions


About

- Independent nonprofit
- Serving 1.5 million customers of Portland General Electric, Pacific Power, NW Natural and Cascade Natural Gas
- Providing access to affordable energy
- Generating homegrown, renewable power
- Building a stronger Oregon and SW Washington

A clean energy power plant

4,309,920 MWh

- 492 average megawatts saved
- 115 aMW generated
- 39 million annual therms saved
- Enough energy to power 470,000 homes and heat 77,000 homes for a year
- Avoided 14.6 million tons of carbon dioxide

Definitions/Clarifications:

For Us:

- Resource Assessment = 'Conservation Potential Assessment'
 - Only talking about energy efficiency resource potential, no renewables or other generation
 - Estimate of cost-effective energy efficiency resource potential that is achievable over a 20-year period

Defining the Problem:

- Model Showing Declining Potential
- Included 'firm' Resources Only
- But New Technology Happens!
 - (LEDs, Ductless heat pumps, Heat Pump Water Heaters, Smart Thermostats, etc...)

It Happens, But What To Do With It?

- Its not 'Firm' now, but it Becomes Firm Nevertheless, and its Reasonable to Expect That It Will Continue to Happen
- We Realized Our Model Underestimated Savings Potential Over a 20-Year Period Without Emerging Technology
- We Sought a Method of Forecasting Savings that Incorporates Market and Program Innovations
- Goal to Create an Emerging Technology Overlay for Our Base Resource Assessment

What We Did...

- We prioritized Emerging Tech in our next resource assessment model upgrade
- Issued RFP for new model and Selected Navigant

New Model

What's new?

- Refreshed measure assumptions
- Define Measures Incrementally
- Better treatment of codes & standards
- New approach to emerging technologies

Define Measures Incrementally

Relative cost and savings determines ranking in competition groups of 'like' technologies in order to determine overall potential.

(Numbers are

for illustrative

purposes only)

CFL

Cost:\$4

LED

Cost:\$4

Savings potential for technologies are incremental to one another – We don't count total savings of each technology

Energy Savings (kWh)

CFL

Cost: \$4

LED

Cost:\$8

How We Do Emerging Tech...

- Predict future improvements
- Be realistic about odds of fruition
- Define incrementally to conventional measures

How We Do Emerging Tech...

- Consider Emerging Technologies through 3rd Party Market Scans
 - Northwest Energy Efficiency Alliance
 - ACEEE
 - CEE
 - U.S Department of Energy
 - Northeast Energy Efficiency Partnerships
 - Efficiency Vermont
 - Minnesota Center for Energy and the Environment

Emerging Technologies (ELE)

Residential	Commercial	Industrial
 LED Lighting CO2 Heat Pump Water Heaters Advanced Heat Pumps Home Automation/Controls Advanced window and insulation technologies Heat Pump clothes dryers 	 LED Lighting Advanced Rooftop Unit A/C Evaporative coolers Energy Recovery ventilators Advanced refrigeration technologies Smart/Dynamic windows 	 LED Lighting Advanced refrigeration controllers Advanced motor technologies

Define Emerging Tech. Measures Incrementally in their Competition Groups

CFL Savings (most cost effective) + LED incremental Savings + Emerging Tech. LED incremental savings (multiplied by risk factor) = Total Potential

ET LED

Total Potential split by competition groups - based on costeffectiveness of each group, as displayed by the lighting scenario here with 3 bulb technologies

Risk Factor Method

- Use risk factors to hedge against uncertainty
 - Market Risk
 - Technical Risk
 - Data Source Risk

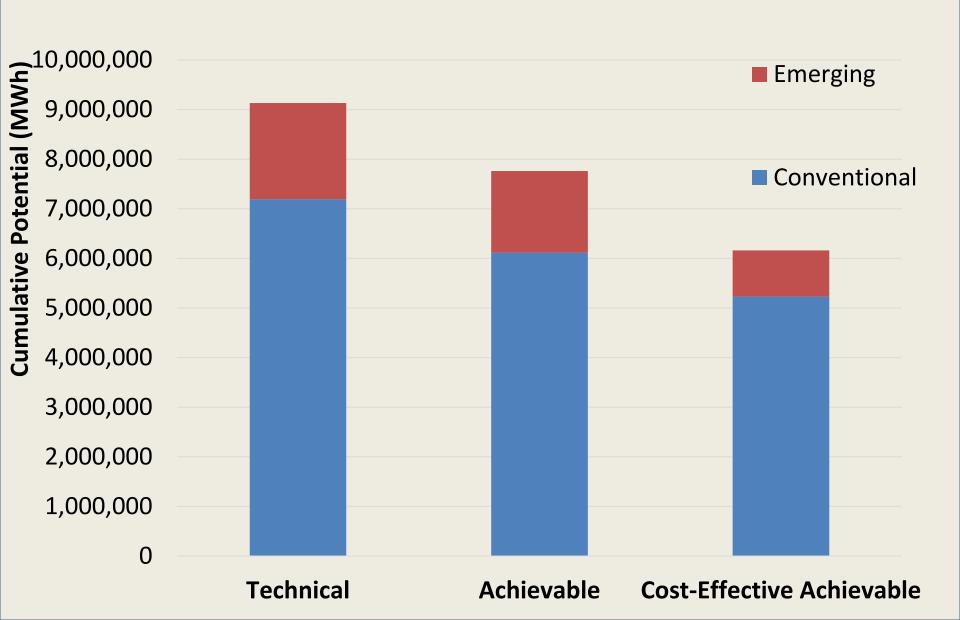
	Risk Factors for Emerging Technologies				
Risk Category	10%	30%	50%	70%	90%
Market Risk (25% weighting)	 High Risk: Requires new/changed business model Start-up, or small manufacturer Significant changes to infrastructure Requires training of contractors. Consumer acceptance barriers exist. 			Low Risk: • Trained contractors • Established business models • Already in U.S. Market • Manufacturer committed to commercialization	
Technical Risk (25% weighting)	Prototype in first field tests.	Limited	with broad commercial appeal	different application or different region	Low Risk: Proven technology in target application. Multiple potentially viable approaches.
Data Source Risk (50% weighting)	0		assessment or lab	installation)	Low Risk: Evaluation results or multiple third party case studies

Emerging Tech Risk Factor Example - LED

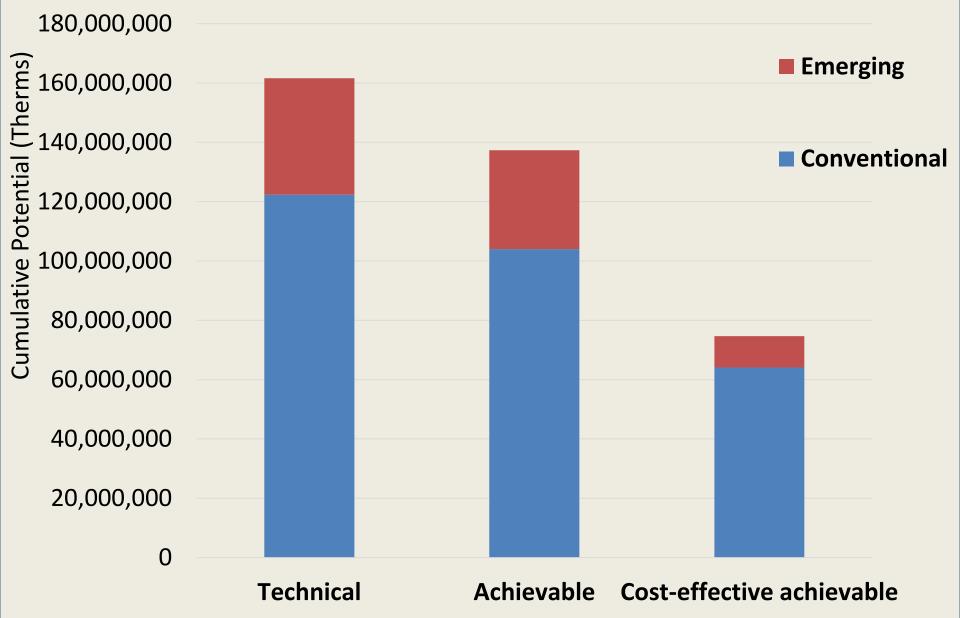
Risk Factor	Weighting	X	Risk Factor	=	Weighted Risk Factor
Market Risk:	25%	X	90%	=	22.50%
Technical Risk:	25%	X	90%	=	22.50%
Data Source Risk:	50%	X	70%	=	35%
Total Risk Factor =					Sum = 80%
ET LED Incremental Savings:	5 kWh	Х	80%	=	4 kWh Risk- Adjusted Potential
Savings per Socket for Competition Group = CFL Savings + LED Incremental Savings + Risk- Adjusted ET LED Incremental Savings				=	kWh

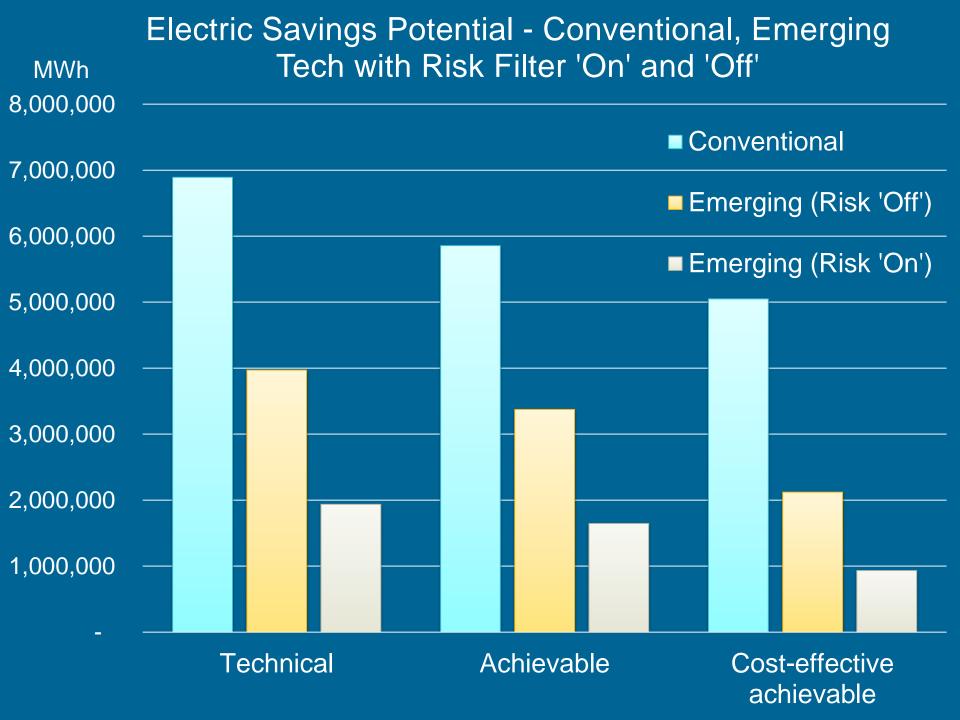
RESULTS

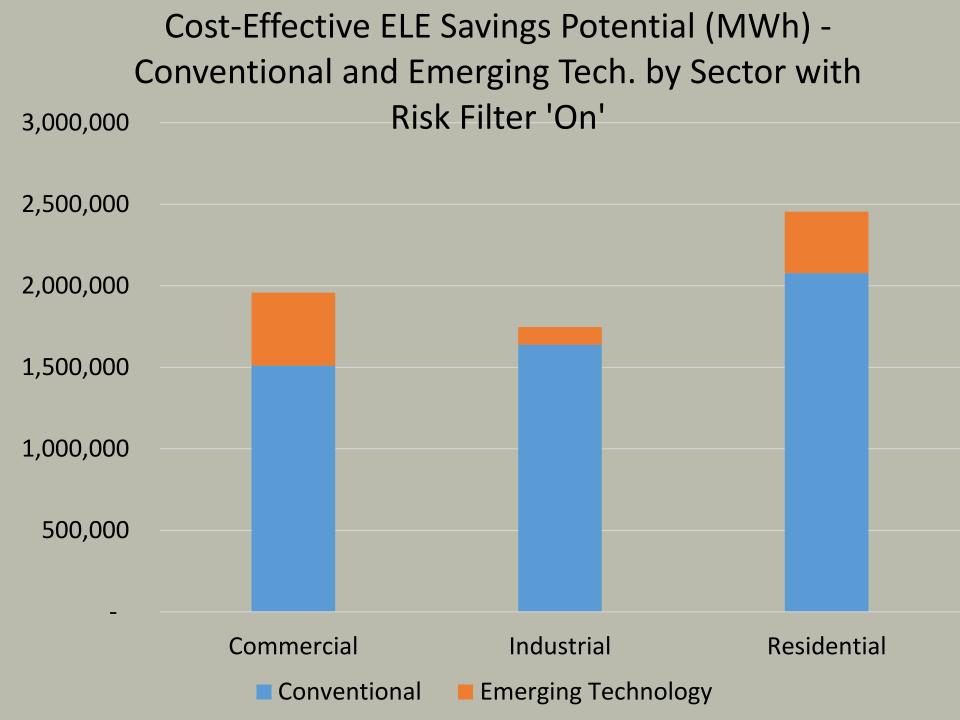
Not technically feasible	Technical Potential		
Not technically	Market	Achievable Potential	
feasible	barriers	85% of Technical	
Not technically	Market	Not cost effective	Cost-Effective
feasible	barriers		Potential


Cost-Effectiveness Screen

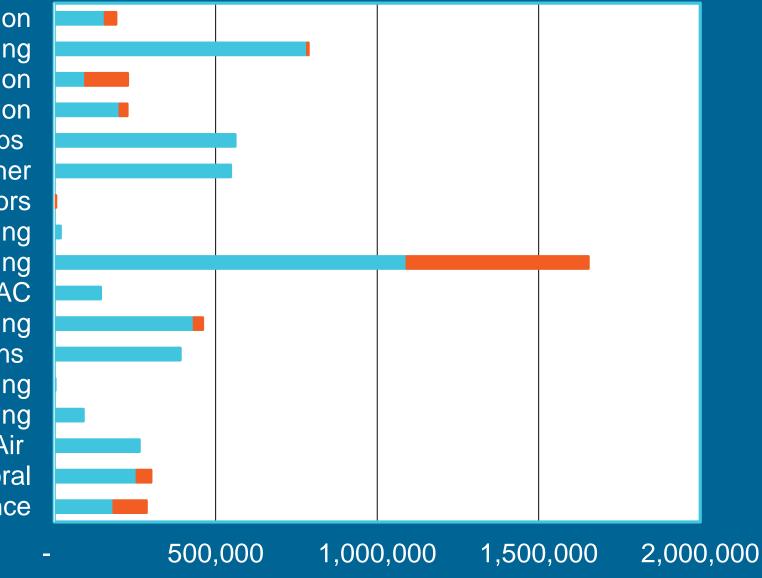
Total Resource Cost (TRC) test


- BCR = NPV of Benefits/Total Resource Cost Benefits
 - Savings x Avoided Costs
 - Quantifiable non-energy benefits
- Measure Costs
 - Total Resource Cost




Conventional vs. Emerging Technology Electric Potential with Risk Factors 'On'

Conventional vs. Emerging Technology Gas Potential with Risk Factors 'On'



Cost-Effective ELE Savings Potential by End Use Conventional and Emerg. Tech. Risk Filter 'On'

Weatherization Water Heating Ventilation Refrigeration Pumps Other Motors Material Handling Lighting **HVAC** Heating Fans Cooling Cooking **Compressed Air Behavioral** Appliance

Conventional Emerging

Emerging Technologies

End result:

- The estimate for any given emerging technology is not accurate
- Taken as a whole, provides a reasonably conservative estimate of what is possible

Thank You

Andrew Hudson, Planning Project M Andrew.Hudson@energytrust.org

Ted Light, Senior Planning Project M Ted.Light@energytrust.org

