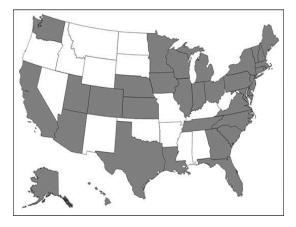
Show Me the Savings: TRMs, Big Data, and EM&V 2.0 as Catalysts for Energy Efficiency Savings

Christine Donovan Vermont Energy Investment Corporation

ACEEE Energy Efficiency as a Resource Conference September 21, 2015

- 1. The Need for Savings Documentation
- 2. What is a Technical Reference Manual?
- 2. Best Practices in TRMs
- 3. The Evolution of TRMs: Integrating Data from Submetering and AMI


About VEIC

- Mission-driven nonprofit
- 30 years reducing economic & environmental costs of energy
- Electric & thermal; buildings
 & transportation
- Services:

Policy, planning, regulatory support Program design, review, evaluation Program implementation

• Clients: Regulators, utilities, government, foundations

VEIC Experience

Technical Reference Manuals

- DC
- Mid-Atlantic (NEEP)
- Illinois
- Ohio
- Iowa
 Vermont

Electronic TRM and Tools

• Launched in 2015

VEIC's Experience with TRMs and EM&V

Comprehensive Energy Efficiency Program Administration

- Implement in highly regulated markets
- Compensated based on independently verified savings
- Realization rates averaging 97-98%

 In part due to development and use of Technical Reference Manuals

The Need for Savings Documentation

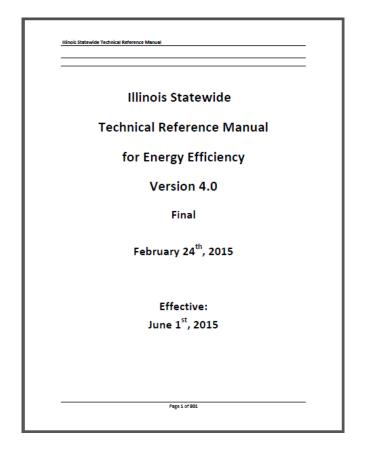
The Need for Savings Documentation

- Essential to calculate and justify savings in a way that integrates with EE program operations and reporting
- Savings calculations are critical for:
 - Program planning and goal setting
 - Cost-effectiveness screening
 - Tracking and reporting
 - Program evaluation
 - PA performance review
- Plus, exciting new uses are emerging for:
 - Market valuation (Forward Capacity Markets)
 - Environmental compliance (Clean Power Plan)

Types of Savings Documentation

- Information exists in many forms:
 - Stand-alone spreadsheets
 - Databases DEER (California); MEMD (Michigan)
 - Downloadable programs
 - Web-based applications
 - Statewide and regional TRMs used in many jurisdictions
 - Many combinations of these
- Each has its advantages and drawbacks

What is a TRM?

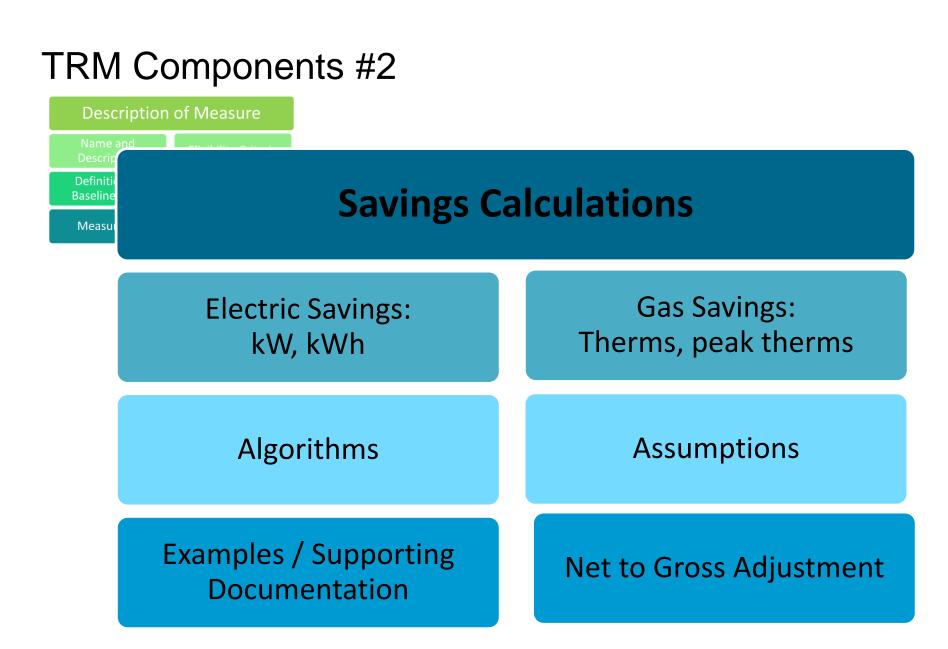


What is a TRM?

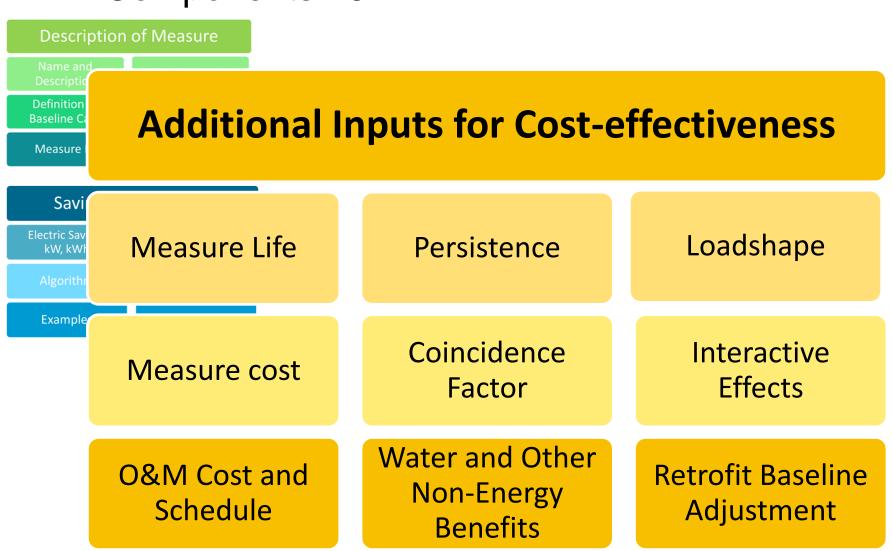
 A manual with a standard methodology for estimating savings for many common, mass marketed EE measures

Advantages

- Provides a full narrative of the measures and how calculations should be applied
- Documents all details of the calculations and assumptions
- Disadvantages
 - Traditional approach can be laborious to update
 - Integration with program operations may not be seamless


TRM Components #1

Name and Description	Eligibility Criteria
Definition of Baseline Case	Definition of Efficient Case
Measure ID	Effective Dates



The TRM as EE Catalyst

TRM Components #3

TRM Components #4

Policy and regulatory section may include:

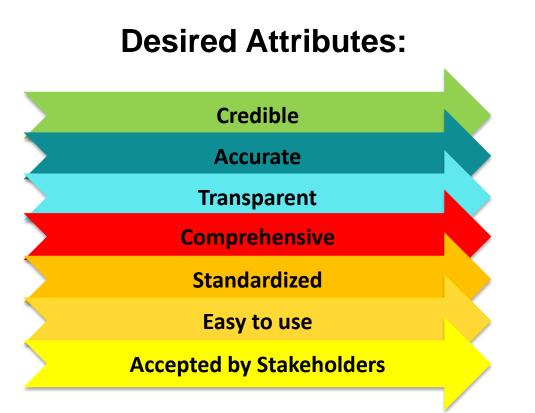
- Enabling legislation
- Cross-cutting assumptions
- Process updates
- Guidelines for use to meet stakeholder needs:
 - ✓ Planning
- ✓ Review

✓ Compliance

- ✓ Screening ✓ Evaluation
- ✓ Tracking
- ✓ Reporting

Regulator **Collaborative Stakeholders** Program Administrator Utility

Geographic Scope and Need for TRMs Varies


- Can serve a single provider/utility or multiple parties
- Trend is toward statewide or regional TRMs
 - Captures information for savings calculations by multiple PAs
 - Provides ready-made tool that can reduce transaction costs
 - Can support participation in FCM or CPP compliance
- Can be complex
 - Being comprehensive can mean hundreds of measures
 - Developing local program and market information can be costly
 - For statewide or regional TRMs, costs can be shared

TRM Best Practices

Desired Attributes for Successful TRMs

Achieving Success Requires:

- ✓ Using Best Data
- ✓ Following Best Practices
- Engaging Stakeholders
 Early and Often

Best Practices for TRMs

- More standardization
 - TRM developers are learning and sharing
 - Uniform Methods Project and other standardized protocol approaches are informing characterizations

Increased accuracy and improved realization rates

• Data from sub metering and / or AMI can enhance savings calculations, inform goals, and improve realization rates

Broader scope

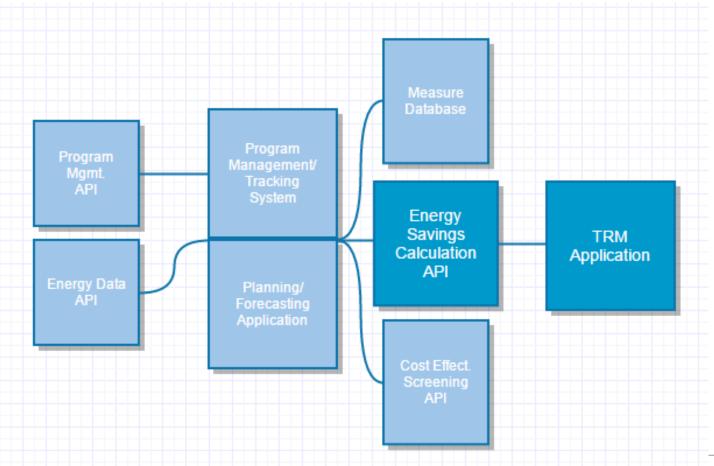
 Non-energy benefits are increasingly being addressed, e.g. water savings, health impacts, and more

Best Practices in User Interface

Application About			📤 Andy Vota	Sign out
ficiency Vermont	TRM -			
	# / Contents / Business Energy Services / Com	pressed Air / Cycling Dryers		
Other Versions			Measure Number:	I-F-4 a
	Cycling Dryers		Portfolio:	53
Effective	Program: Business Energy Services		Status	Active
Version Dates Compare	End Use: Compressed Air		Effective Date:	1/1/2008
-F-4 a 1/1/2008– TBD			End Date:	TBD
100	Referenced Documents			
Export Characterization to PDF	 BHP Weighted Compressed Air Load Profile Compiled Data Request Results Air Dryer Calc Compressed Air Analysis 	is v3		
	Description			
	Use of a refrigerated dryer that cycles on and off dryers with capacities of 600 cfm and below.	f as required by the demand for compressed air instea Larger dryers will be handled on a custom basis.	ad of running continuously. This measure only a	pplies to
	Estimated Measure Impacts			
	Average Annual MWH Savings per unit	Average number of measures per year	Average annual MWH savings per year	
	1.17 ^[1]			

Best Practices in User Interface

TRM Application About	🛎 Andy Vota Sign out		
Efficiency Vermont			
	Algorithms		
	Electric Demand Savings		
Other Versions	ΔkW = ΔkWh / HOURS		
Effective	Symbol Table		
Version Dates Compare I-F-4 a 1/1/2008–	Electric Energy Savings		
твр	$\Delta kWh = ((4 \times hp_{compressor}) \times 0.0087 \times HOURS \times (1 - APC)) \times RTD$		
First Observationalise to 200	Where:		
Export Characterization to PDF	∆kW = gross customer kW savings for the measure		
	∆kWh = gross customer annual kWh savings for the measure		
	0.0087 = compressor CFM to baseline dryer kW conversion factor ^[2]		
	4 = approximate compressor output CFM per compressor motor nominal hp ^[3]		
	APC = Average % Capacity; average operating capacity of compressor (65%) ^[4]		
	HOURS = compressor total hours of operation (see Operating Hours section)		
	hp _{compressor} = compressor motor nominal hp		
	RTD = Chilled Coil Response Time Derate (0.925) (from "Air Dryer Calc.xls")		
	See "Compressed Air Analysis.xls" for algorithm details.		
	Baseline Efficiencies		
	The baseline equipment is a non-cycling refrigerated air dryer with a capacity of 600 cfm or below.		
	High Efficiency		
	The high efficiency equipment is a cycling refrigerated air dryer with a capacity of 600 cfm or below.		


Best Practices in User Interface

RM Application About		Andy Vota Sign out						
Efficiency Vermont	Algorithms Electric Demand Savi	Operating Hours						
		Single shift (8/5) – 1976 hours (7 AM – 3 PM, weekdays, minus some holidays and scheduled down time)						
		2-shift (16/5) – 3952 hours (7AM – 11 PM, weekdays, minus some holidays and scheduled down time)						
Other Versions	Symbol Table	abol Table 3-shift (24/5) – 5928 hours (24 hours per day, weekdays, minus some holidays and scheduled down time)						
	Electric Energy Savin	4-shift (24/7) – 8320 hours (24 hours per day, 7 days a week minus some holidays and scheduled down time)						
Effective	∆kWh							
Version Dates C		Load Shapes						
I-F-4 a 1/1/2008– TBD	Where:	44b Indust. 1-shift (8/5) (e.g., comp. air) 45a Indust. 2-shift (16/5) (e.g., comp. air)						
	ΔkW	46a Indust. 3-shift (24/5) (e.g., comp. air)						
	ΔkWh	47a Indust. 4-shift (24/7) (e.g., comp. air)						
Export Characterization	0.0087	Values						
	4	Winter Winter Summer Summer Winter Summer Effective Expiration						
	APC	Name Number Status On kWh Off kWh On kWh Off kWh kW Date Date						
	HOURS	Indust. 1-shift (8/5) (e.g., comp. air) 44b Active 66.60 % 0.00 % 33.40 % 0.00 % 59.38 % 1/1/2012						
	hp _{compressor}	Indust. 2-shift (16/5) (e.g., comp. air) 45a Active 62.40 % 4.20 % 31.30 % 2.10 % 95.00 % 95.00 % 1/1/2012						
	RTD	Indust. 3-shift (24/5) (e.g., comp. air) 46a Active 44.40 % 22.20 % 22.30 % 11.10 % 95.00 % 95.00 % 1/1/2012						
	See "Compressed Air An	Indust. 4-shift (24/7) (e.g., comp. air) 47a Active 31.70 % 34.90 % 15.90 % 17.50 % 95.00 % 95.00 % 1/1/2012						
	Baseline Efficier							
	The baseline equipment							
	High Efficiency	Net Savings Factors						
The high efficiency equip		Measures Tracks						
		CMPDRYER Compressed air, Air Dryer 6013CUST Cust Equip Rpl						
		6013PRES Pres Equip Rpl						
		6014A250 Act250 NC						
		6014NANC Non Act250 NC						
		Values						

Best Practices in Data Management

Electronic platforms allow the TRM to become a more automated component of data management and reporting systems

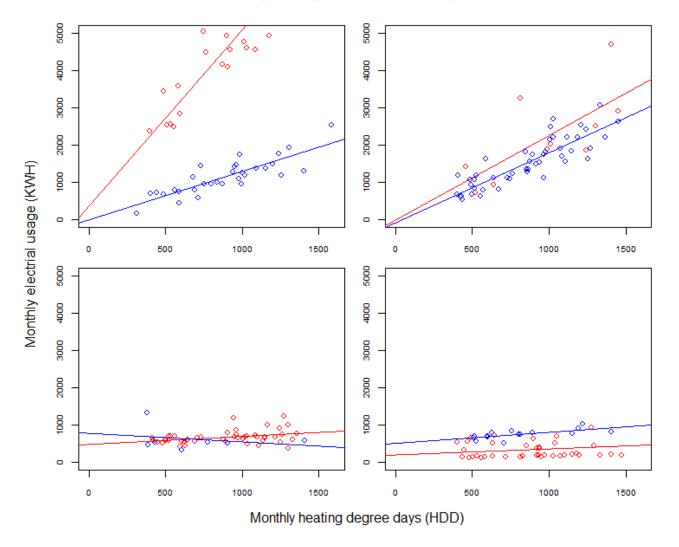
The Evolution of TRMs: Moving Toward EM&V 2.0

TRMs and EM&V 2.0

- Development of electronic, database platforms for TRMs:
 - Enables integration of submetering and AMI data
 - Supports the move toward 8,760 hrs / year load shapes rather than just on- and off- peak information
 - Simplifies the ability to adjust calculations informed by new data
 - Reduces data analysis time and therefore labor costs
 - Expedites the ability to modify program designs
 - Helps catalyze savings and improve program performance

Example: Electric Resistance Heat

- Goal
 - Serve 5-10% of homes in VT with electric resistance heat
 Difficult to identify; previously dropped the program
- Action
 - Recently tried a new approach to target customers
 - $_{\odot}$ Used data to correlate heating degree days and usage
 - $\circ\,$ Identified likely candidates with electric resistance heat
 - \circ Ran a targeted promotion


Next steps

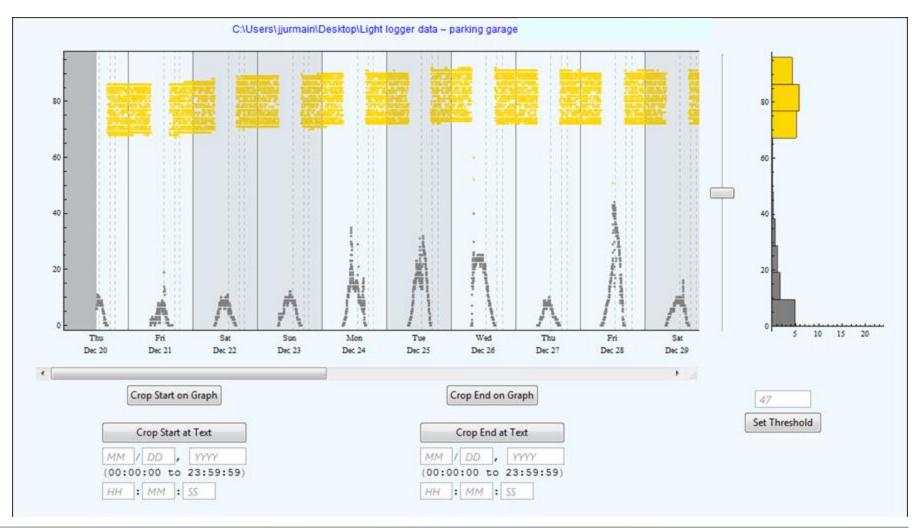
- Leverage this as an early stage example of what lies ahead with more, better AMI data
- Replacing average values currently in TRM with metrics calculated from AMI data

Efficiency Vermont Example: Electric Resistance Heat

Pre/post response to HDD, examples

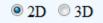
Efficiency Vermont Example: Light Logger Analysis

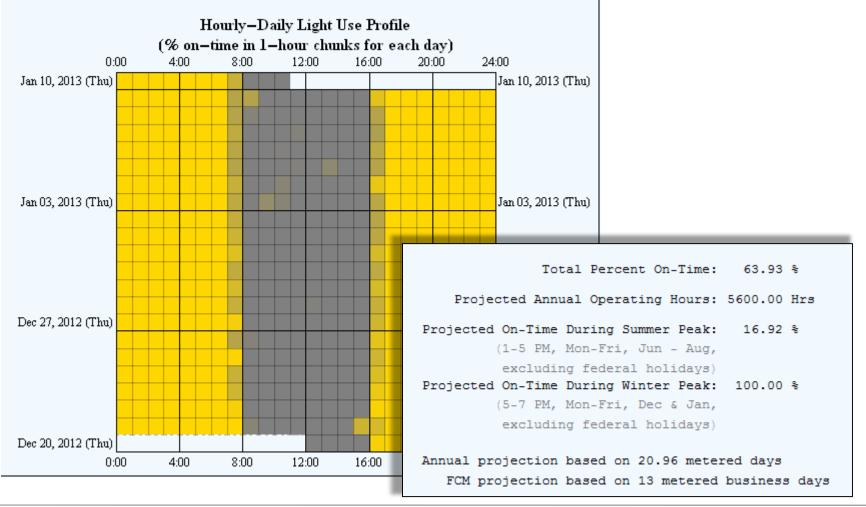
- Goal
 - Determine lighting hours of use across applications using light logger submetering
- Action
 - Created tool to calculate key outputs
 - $_{\odot}$ Annual hours and on-peak / off-peak hours
 - These fed directly into the TRM
- Result
 - Labor savings for EM&V, therefore reduced program cost


Next steps

 Internet connected light loggers will enable more frequent updates to the TRM

Example: Light Logger Analysis





Vermont

Energy Investment Corporation

Example: Light Logger Analysis

TRMs and EM&V 2.0: Opportunities and Challenges

- Integrating more real world data into TRMs through submetering and/or AMI can:
 - Increase accuracy in savings calculations
 - Lead to program changes that result in increased savings
 - Enhance realization rates
 - Thereby, continue the move towards "EM&V 2.0"
- Utilities / program administrators will need:
 - A data collection infrastructure
 - Database and analytics skills
 - The ability and capacity to monitor and address opportunities shown through the data

TRMs and EM&V 2.0: Tips for Success

- Invest in TRMs and savings calculation databases and tools with consideration of the full data collection, management, and reporting system
- Avoid adding data integration and tools as patches on top of the current way of doing things
- Engage key stakeholders early and often
- Create and build partnerships among utilities, PAs, and other key stakeholders to ensure buy-in and acceptance

Contact Information

Christine Donovan, Director, Business Strategy <u>cdonovan@veic.org</u> (802) 540-7801

> Cheryl Jenkins, VEIC TRM Lead cjenkins@veic.org (802) 540-7603

Pierre Van Der Merwe, VEIC EM&V Lead

pvandermerwe@veic.org

(802) 540-7809

