# Electric Rate Design and Energy Efficiency

National Conference on Energy Efficiency as a Resource November 1, 2017 Litchfield Park, Arizona

**Brendon Baatz, ACEEE** 





The American Council for an Energy-Efficient Economy is a nonprofit 501(c)(3) founded in 1980. We act as a catalyst to advance energy efficiency policies, programs, technologies, investments, & behaviors.

Our research explores economic impacts, financing options, behavior changes, program design, and utility planning, as well as US national, state, & local policy.

Our work is made possible by foundation funding, contracts, government grants, and conference revenue.

aceee.org @ACEEEdc



# Drivers of change in rate design

- Increased penetration of AMI
- Rapid market growth in solar PV
- Flat or declining electric sales





# Changes in Rate Design

- Higher fixed (customer) charges
- Residential demand charges
- Time varying rates
- Segmented customer classes
- Decoupling or formula rates





# **Higher Customer Charges Results**

- 87 cases decided between 2013 and 2016
  - 3 with decrease
  - 30 with no change
  - 40 under a 40% increase
  - 15 higher than 40% increase
  - Average increase is 15%
- Proposals still continue
  - Current national average for 51 largest is \$8.65 per month



# **Residential Demand Charges**

- AMI meters make demand charges feasible for smaller customers
- Uncommon until recently
- Today over 30 utilities in U.S. (mostly coops), nearly all voluntary
- Very few studies on customer response



### **Selected Examples**

| Utility                                        | Customer<br>charge<br>(\$/month) | Demand charge<br>(\$/kW)             | Demand charge billing period                                                      | Volumetric rate |
|------------------------------------------------|----------------------------------|--------------------------------------|-----------------------------------------------------------------------------------|-----------------|
| Alabama Power                                  | \$14.50                          | \$1.50                               | all hours, all days                                                               | varies, TOU     |
| Arizona Public<br>Service                      | \$16.68                          | \$13.50 (summer) \$9.30<br>(winter)  | weekdays, 12 pm to 7 pm                                                           | varies, TOU     |
| Black Hills Energy<br>(SD)                     | \$13.00                          | \$8.10                               | all hours, all days                                                               | 2.26¢/kWh       |
| Black Hills Energy<br>(WY)                     | \$15.50                          | \$8.25                               | all hours, all days                                                               | 6.43¢/kWh       |
| Xcel Energy (CO)                               | \$12.25                          | \$8.57 (summer) \$6.59<br>(winter)   | all hours, all days                                                               | 1.74¢/kWh       |
| Intermountain<br>Rural Electric<br>Association | \$10.00                          | \$14/kW                              | all hours, all days                                                               | 6.59¢/kWh       |
| Glasgow Electric<br>Board                      | \$29.16                          | \$11.33 (summer)<br>\$10.37 (winter) | weekdays, 1 pm to 7 pm<br>(summer), 6 am to 4 am<br>and 10 am to 9 pm<br>(winter) | varies, TOU     |

# **Residential Demand Charge Proposals**







Under CPP, event *hours* are set one day ahead (based on the wholesale price forecast), and the event *price* is static and pre-determined in advance

Under VPP, peak *hours* are defined in advance, and the peak *price* is variable and set one day ahead (based on the wholesale price forecast)

Under TOU, the peak *hours* and *price* are static and pre-determined in advance



### **Time Varying Rates**



# **Time Varying Rates**

- Changes in overall consumption
- Reviewed 50 treatments from six pricing pilots
- 46 of 50 observations showed a reduction in overall consumption.

| Rate treatment | Number of<br>observations | Average peak<br>demand<br>reduction | Average<br>reduction in<br>overall<br>consumption |
|----------------|---------------------------|-------------------------------------|---------------------------------------------------|
| СРР            | 13                        | 23%                                 | 2.8%                                              |
| PTR            | 11                        | 18%                                 | 2.3%                                              |
| TOU            | 17                        | 7%                                  | 1.2%                                              |
| TOU+CPP        | 8                         | 22%                                 | 2.1%                                              |
| TOU PTR        | 1                         | 18%                                 | 7.4%                                              |
| All            | 50                        | 16%                                 | 2.1%                                              |



# **Time Varying Rates**

- Most utilities offer TOU rate but overall very undersubscribed
- Customer resistance due to potential bill swings
- Numerous pricing studies since early 1980's
  - Demonstrated price response and customer understanding
  - Roughly a 2% conservation effect
- Increasing prevalence following Consumer Behavior Studies



# Rate Design and Payback – An Example





# Rate Design and Energy Efficiency

- What factors drive customer decision to invest in energy efficiency?
  - Overwhelmingly bill savings
- How do changes in revenue neutral rate designs alter pay back periods for energy efficiency measures?
  - Arizona utility
    - 14 energy efficiency measures
    - 20 iterations of revenue neutral rate design



| Measure or program                              | Annual<br>energy<br>savings<br>(kWh) | Coincident<br>peak<br>demand<br>savings (kW) | Incremental<br>cost (\$) |
|-------------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------|
| LED 40-watt replacement                         | 27.17                                | 0.00139                                      | \$4.04                   |
| LED 60-watt replacement                         | 36.87                                | 0.00189                                      | \$6.02                   |
| LED 75-watt replacement                         | 42.69                                | 0.00219                                      | \$9.91                   |
| Variable-speed pool pump                        | 1,725                                | 0.19600                                      | \$437                    |
| Duct test and repair                            | 865                                  | 0.81282                                      | \$907                    |
| Prescriptive duct repair                        | 421                                  | 0.39572                                      | \$300                    |
| Advanced diagnostic tune-up                     | 492                                  | 0.27232                                      | \$157                    |
| Equipment replacement with quality installation | 576                                  | 0.62160                                      | \$330                    |
| New construction ESTAR Homes v. 3.0             | 2,156                                | 0.86000                                      | \$2,132                  |
| New construction ESTAR Homes v. 3.0—Tier 2      | 3,247                                | 1.31000                                      | \$2,830                  |
| New construction total program                  | 2,593                                | 1.04000                                      | \$2,411                  |
| Attic insulation                                | 787                                  | 0.28000                                      | \$922                    |
| Air sealing and attic insulation                | 1,235                                | 0.36000                                      | \$1,610                  |
| Smart strip                                     | 96                                   | 0.02532                                      | \$22.49                  |



### Load shape data for end uses





Source: Hendron, R. and C. Engebrecht. 2010. "Building America House Simulation Protocols." National Renewable Energy Laboratory. <u>nrel.gov/docs/fy11osti/49246.pdf</u>.

### **Rate Iterations**

- Customer charge (\$5 to \$50)
- Tiered rates (3 tier inclining block rates)
- TOU rates (2:1, 3:1, 4:1 peak to off peak ratio)
- Demand charges (\$5, \$7.50, and \$10 per kW)
- On peak window assumed from 3 pm to 8 pm



### 60 watt LED replacement bulb



### Attic Insulation



# Payback Example Conclusions

- Customer charge
  - Flat & tiered rates 31 to 62% increase
  - TOU rates 24 to 34% increase
- Demand charges
  - Increased payback for all measures compared to flat, tiered, and TOU
  - 42% average increase moving from \$5 to \$10/kW demand charge
- TOU rates
  - Often among shortest pay back periods
  - Peak to off peak ratio impact differed by measure



### **Payback Curves**





Source: 2013 Demand Side Resource Potential Study Report for Kansas City Power & Light



#### **Questions?**

