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Agenda
Topics of discussion
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Who is EnergySavvy?

Continuous EE Measurement

Reliable EE Predictions
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EnergySavvy at a Glance
Data-driven personalization for the utility customer experience

Quick Facts

• Founded in 
2008

• More than 30 
utilities and 
state programs

• Seattle and 
Boston offices
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Setting the Stage

• Our savings measurement software is a tool that enhances EE 
program management and evaluation—it does not replace formal 
third-party evaluation.

• Our methods build on existing best practices for whole-building 
consumption data analysis—see for example the Uniform Methods 
Project, Chapter 8.

• This approach is a good fit for many residential and SMB programs; 
applicability to large C&I is less certain.

• Everything presented here is possible with either monthly billing data 
or AMI data: “Advanced M&V” does not require AMI.

Definitions, context, points of clarification…



Continuous EE Measurement
Building on best practices in billing analysis
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Weather-Normalized Savings
Simple pre-post approach adjusted for changes in temperature

EE project 
installed

Metered usage 
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Pre-treatment Post-treatment

Predicted 
energy use 
without 
project

Actual 
energy use 
after project

Weather-Normalized Savings
Simple pre-post approach adjusted for changes in temperature
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Simple savings 
= predicted

- actual

Weather-Normalized Savings
Simple pre-post approach adjusted for changes in temperature

Pre-treatment Post-treatment
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Aggregate weather-
normalized savings 
show large variability 
over time.

Are these variations 
related to EE program 
activity?

Aggregate Savings
Tracking program performance through savings measurement

PY 2015
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Exogenous Effects
Large confounding factors not captured by weather normalization

What if we do the same 
analysis for similar 
homes that did not 
participate in the 
program?

Non-participant 
“savings” may arise from 
many sources:

• Economic trends
• Extreme weather
• Modeling error
• Etc…

PY 2015



11

The goal: predict the exogenous change in usage at a 
home, using all the relevant data we can obtain about 
that home.

Machine learning (ML) is a great fit for this problem: 
approximate unknown predictive relationships in a 
large, diverse data set.

We’ve used a standard ML algorithm (Random 
Forests) for this purpose, training the model with a 
large sample of representative non-participants.

Predicting Exogenous Effects
Moving beyond the matched comparison group
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“Metered” EE Savings
Subtract the exogenous effects to obtain consistent EE measurements

Results converge after only a 
few months of relevant data

Even with 12 post-
treatment months 
across all projects, 
exogenous effects 
can amount to 20-
50% of average 
savings.PY 2015



Reliable EE Predictions
Moving beyond deemed savings



14

How do EE savings vary between homes, from project to project?

Predictive Models of Metered Savings

Deemed savings tend to be optimistic, and they 
offer little or no granular insight into program or 
measure performance.

With metered savings and machine learning, we can 
predict how much specific customers are likely to 
save from specific EE measures.

This provides realistic, granular predictions for 
future EE planning and targeted marketing.
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EE Savings Predictions
Reliable expectations for any customer and measure mix
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EE Savings Predictions
Reliable expectations for any customer and measure mix

Similar predicted 
savings despite large 
difference in deemed.
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EE Savings Predictions
Reliable expectations for any customer and measure mix

Interactive effects: EE is 
not always additive when 
multiple measures are 
installed.
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In summary…

• Weather-normalized savings is a good 
starting point, but it’s not sufficient—we can 
do better.

• For continuous and granular EE 
measurement, it’s crucial to understand 
exogenous effects.

• With machine learning, we can leverage all 
the available data to predict exogenous 
effects and uncover real insight into program 
performance.

• With reliable savings predictions, EE can be 
confidently deployed where it matters most.



Thank You

John Backus Mayes
Senior Data Scientist
john@energysavvy.com



BACKUP
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Additional information

Premise

Location

Demographics

Insights derived from AMI data are useful predictive features

Training the Model

Metered savings model 
(variant of Random Forest)

Predicted savings
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Decision trees: the building block of random 
forests

samples = 
100

x1 <= 0.52

samples = 
45 

x1 <= 0.103

samples = 
55 

x2 <= 423

samples = 
27

y = 50.24

samples = 
17

y = 214.6

samples = 
40

x3 <= 2.34

samples = 
15

x1 <= 6.1

samples = 
22

y = 0.8

samples = 
18

x2 < 25.3

samples = 
8

y = 
200.98

samples = 
7

y = 42.1

samples = 
8

y = 33.6

samples = 
10

y = 120.45

True False

Input features [x1 = 0.9, x2 = 231, x3 = 
1.6]

Output value [y]

At each node an 
optimization algorithm 
finds the feature and 
threshold value that best 
splits the data (results in 
the lowest MSE)

Node

Each sample in the 
data follows a path 
determined by a series 
of true/false 
statements based on 
its feature values to 
reach a predicted 
output value
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• Individual decision trees 
are sensitive to noise in 
the training data

• Averaging the predictions 
from a forest combats 
this tendency to overfit
as long as trees are not 
correlated

• Reduce correlation with 
random subsets of the 
training data, and 
optimization of random 
sets of features at 
nodes

Combine decision trees to make a 
random forest
Many weak learners come together to make a strong learner

Input features [x1, x2, 
x3]

Average value

samples = 100
x1 <= 0.52
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x1 <= 0.103 samples = 55 
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