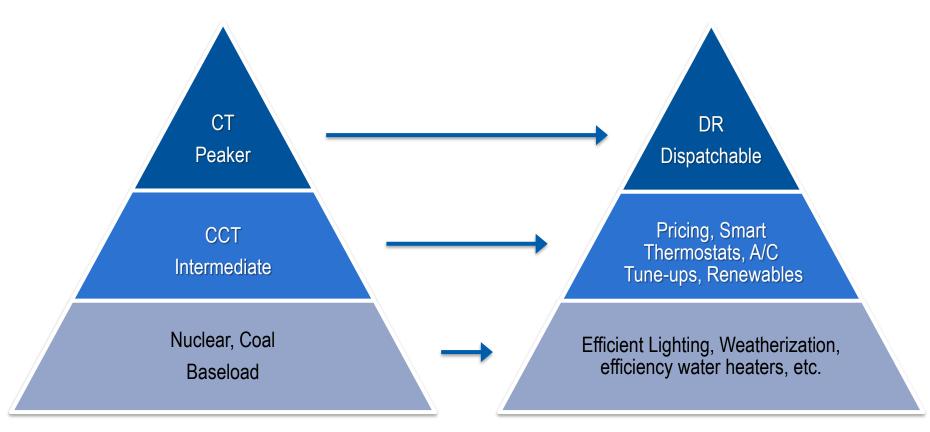


Looking Beyond the Hour

Hossein Haeri

ACEEE Energy Efficiency as a Resource Conference November 1, 2017

Outline


Role of EE in Power System Planning

System Benefits of EE

Measuring and valuing capacity contributions

Remembering Arthur Rosenfeld

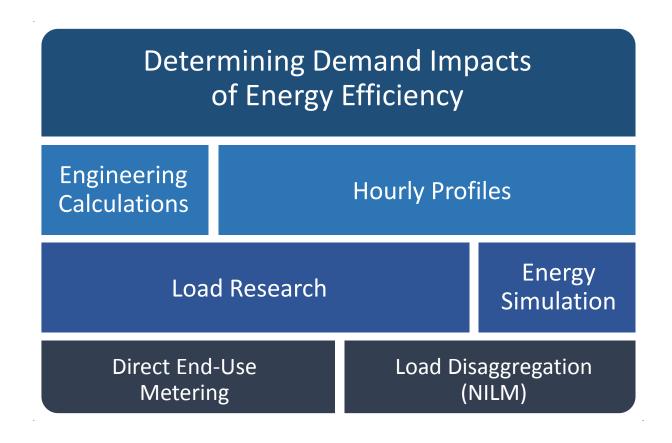
DSM, the Virtual Power Plant

Conventional Generation

Demand-Side Management

Energy Efficiency – A Layered Cake

Capturing Capacity Value of Energy Efficiency

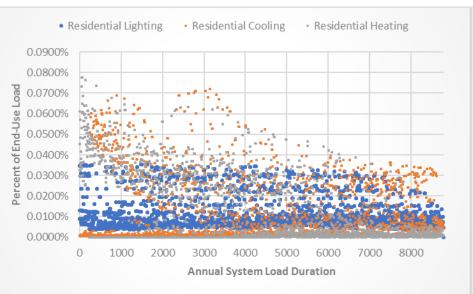

What is needed:

- Hourly system load profile
- Hourly energy efficiency measure "savings" profile
- Avoided hourly energy cost (\$/MWh)
- Avoided capacity costs (\$/kW-year)

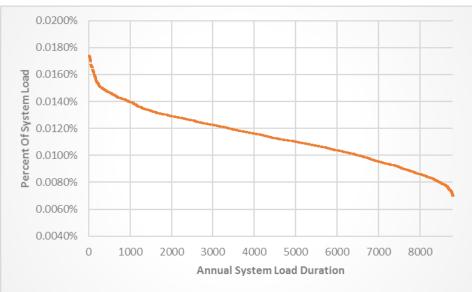
What to do:

- Define peak hours (window)
- Calculate capacity value as product of load shape and avoided costs
- Calculate levelized benefits over measure's EUL

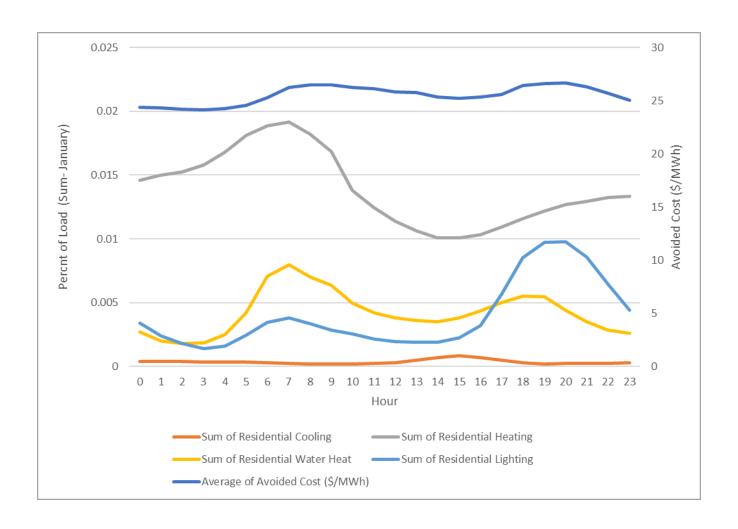
Where Load Shapes Come From



Defining Peak


Highest peak (1) hour
Highest consecutive hours
Top hours of load duration curve (top 2%-5%)
Daily peak hours (e.g. 3:00 – 8:00) weekdays in January and February
Loss of load probability (LOLP)
Hourly peak probability distribution

Example: Residential Sector Winter Peaking Utility


Hourly End-Use Loads

Hourly System Load

Example: Residential Sector (Winter Month)

How We Define Peak Matters

Avoided Cost Value Captured by Measures

	Peak Hour	Top Twenty Hours	Peak Period
No Capacity Value			
Residential Lighting	\$3.59	\$5.66	\$4.05
Residential Cooling	\$0.21	\$0.00	\$0.33
Residential Heating	\$16.98	\$12.86	\$11.58
With Capacity (\$100/kW)			
Residential Lighting	\$16.48	\$25.76	\$19.26
Residential Cooling	\$0.96	\$0.00	\$1.57
Residential Heating	\$78.06	\$59.01	\$55.27

Conservation Load-Factor

Conservation load factor:

- Elegant concept
- Easy to calculate
- Analogous to system load factor (LF), capacity utilization factor (CUF), and diversity load factor (DLF)

Conservation Load-Factor

Conservation load factor:

```
CLF = Average Annual Hourly Load Savings (kW)

Peak Load Savings (kW)

CLF = Annual Energy Savings (kWh)

Peak Load Savings (kW) * 8760
```

Heating (HP):

Or:

_	Annual savings (kWh)	= 457
_	Peak hour savings (kW)	= 0.28
_	CLF	= 0.19

Lighting (LED):

_	Annual savings (kWh)	= 40
_	Peak load savings (kW)	= 0.01
_	CLF	= 0.41

Conservation Load-Factor - Example

Assume a residential lighting and A/C efficiency program with savings of 10% in lighting and 10% in A/C usage annually:

Heating (HP):

_	Annual savings (kWh)	= 457
_	Peak hour savings (kW)	= 0.28
_	CLF	= 0.19

Lighting (LED):

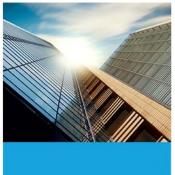
_	Annual savings (kWh)	= 40
_	Peak load savings (kW)	= 0.01
_	CLF	= 0.41

Valuation of Capacity Savings

Recall that:

Or:

Assume capacity value of \$60 per kW-year


- Capacity value of 1 kW of savings from heating $= $60 \div (0.19 * 8760) = 4.0 \text{ cents}$
- Capacity value of 1 kW of savings from lighting\$60 ÷ (0.41 * 8760) = 2.0 cents

The lower the CLF, the higher the capacity value from a kWh saved.

ANY QUESTIONS

CADMUS

Hossein HaeriSenior Vice President, Energy Services

hossein.haeri@cadmusgroup.com Office (503) 476-7140

- **f** Facebook.com/CadmusGroup
- ©CadmusGroup
- in Linkedin.com/company/the-cadmus-group