Field Testing Results for Residential Gas-Fired Heat Pump Water Heaters

Paul Glanville
ACEEE Hot Water Forum
Monday, February 23rd, 2015
Nashville, TN
Overview

> Why Residential Gas HPWHs?
> Describing the GHPWH
> Field Test Plan
> Preliminary Results
> What’s Next
Why Residential Gas HPWHs?

Residential Water Heating Market has been driven by significant innovation in the past 10 years (well done!).

EnergyStar® and past/future changes in Federally allowable minimum efficiencies have resulted in:

> A proliferation of “mid-efficiency” gas water heating products.
> A gas tankless market at over 10% of the overall gas WH market, and growing.
> More, lower cost options for condensing-efficiency gas storage and “hybrid” products.
> A recent generation of electric HPWHs that are here to stay, and also growing in market share.
Why Residential Gas HPWHs?

But…

While electric water heating customers have product options with a “step-change” in operating efficiency/cost savings, gas customers can go from 0.59/0.62 EF to:

> Non-condensing EnergyStar® water heaters with 0.67-0.70 EF, with higher equipment/installed cost.

> Condensing GSWH/Hybrid, requiring venting/gas piping upgrade, electrical service, delivering a ~0.80 EF.

> Non-condensing or condensing Gas Tankless Water Heater (GTWH), with an EF 0.82 – 0.95, requiring venting upgrade, electrical service, and often larger gas piping.

Need that “step-change” that retrofits with min. EF gas water heaters, the majority of market.
Describing the Gas HPWH

GHPWH System Specifications: Direct-fired NH3-H2O single-effect absorption cycle integrated with storage tank and heat recovery. Intended as fully retrofittable with most common gas storage water heating, *without infrastructure upgrade*.

<table>
<thead>
<tr>
<th></th>
<th>GHPWH</th>
<th>Units/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Developer</td>
<td>Stone Mountain Technologies</td>
<td>OEM support</td>
</tr>
<tr>
<td>Heat Pump Output</td>
<td>10,000</td>
<td>Btu/hr</td>
</tr>
<tr>
<td>Firing Rate</td>
<td>6,300</td>
<td>Btu/hr</td>
</tr>
<tr>
<td>Efficiency</td>
<td>1.3 Energy Factor</td>
<td>Projected</td>
</tr>
<tr>
<td>Tank Size</td>
<td>75</td>
<td>Gallons</td>
</tr>
<tr>
<td>Backup Heating</td>
<td>Experimenting with backup currently</td>
<td></td>
</tr>
<tr>
<td>Emissions (projected)</td>
<td>10 ng NO(_x)/J</td>
<td>Based upon GTI laboratory testing</td>
</tr>
<tr>
<td>Commercial Introduction</td>
<td>2016</td>
<td>Projected</td>
</tr>
<tr>
<td>Installation</td>
<td>Indoors or semi-conditioned space (garage)</td>
<td>Sealed system has NH3 charge < 25% allowed by ASHRAE Standard 15</td>
</tr>
<tr>
<td>Venting</td>
<td>½” – 1” PVC</td>
<td></td>
</tr>
<tr>
<td>Gas Piping</td>
<td>½”</td>
<td></td>
</tr>
<tr>
<td>Estimated Consumer Cost</td>
<td><$1,800</td>
<td></td>
</tr>
</tbody>
</table>

Information and graphic courtesy of Stone Mountain Technologies, Inc.
Describing the Gas HPWH

> With low firing rate required, GHPWH installation costs are low
> GHPWH has total cost of ownership close to baseline water heaters, cost-engineering will result in the lowest cost of ownership
Describing the Gas HPWH

How it works - Very similar to EHPWHs, except:

> Compressor is replaced with “thermal compressor”, comprised of several HXs and addition of absorbent.
 - Easier to compress liquid, solution pump requires appx. 1.0% of the compression energy of a standard vapor compression heat pump

> Ammonia is the refrigerant, instead of more common R-134a for EHPWHs, which is:
 - Very efficient thermodynamically, used almost exclusively in industrial refrigeration
 - Has large affinity for water, stable over range of temperature/pressure conditions
 - Non-ozone depleting
 - A natural chemical, with a global warming potential of 0 (R-134a is 1300)
 - An irritant and hazardous, requiring special care.
 Helpfully, unlike most refrigerants, NH3 is lighter than air.

[Source: MW CHP Center]
Describing the Gas HPWH

How it works – SMTI System Design:

> Heat pump absorbs heat from the ambient air and recovers heat from the absorption of NH3 to water (in absorber)
 > Heat transfer to potable water is mediated by a closed hydronic loop

> In addition, useful heat from hot flue gases exiting the heat pump is delivered to storage tank by separate HX

> As the GHPWH only partially heats water from the refrigeration cycle, cooling effect at the evaporator is 1/3-1/2 that of equivalently sized EHPWHs

> GHPWH uses Single Effect absorption cycle, more complex cycles were considered by SMTI but were not cost-effective
Field Test Plan

Monitoring Goals

1) Pre-commercial GHPWH system reliability and performance, with monitoring of both the heat pump cycle and the water heating system.

2) Quantifying delivered efficiency versus prior laboratory testing

3) Identifying installation issues and other barriers to market entry, including data concerning the space cooling effect

4) Assessing end-user satisfaction with hot water production and potential nuisances (e.g. system noise)
Field Test Plan

Building on prior GTI lab testing of early GHPWHs, estimate the:

> COP of the heat pump as function of ambient T & RH, inlet water mains, and other installation characteristics.

> Delivered efficiency of hot water as function of usage volumes/patterns, compare to similar high-efficiency systems and extrapolate to annual energy savings.

> Disaggregation of electricity and natural gas inputs, tracking backup heating.

> Space cooling effect on interior space

> Robustness of absorption heat pump startup/shutdowns, as function of operating conditions.
Field Test Plan

Measurement Scheme (Continuous)

<table>
<thead>
<tr>
<th>Monitor Phase</th>
<th>Continuous Measurement</th>
</tr>
</thead>
</table>
| Baseline & GHPWH | - Indoor T & RH
- NG Flow
- Water Flow
- Power Draw (total)
- Water inlet/outlet temperatures |
| GHPWH Only | - Gas valve on/off
- Storage tank thermostat temperature
- HP Temperatures
- Evap in/out
- Hyd. Loop Rtn/Sup.
- Desorber shell
- Flue gas exiting temperature |
Field Test Plan

Initial GHPWH “Controlled” Field Test

> First unit installed at SMTI employee home in late 2013, has been operating ever since. Unit was built by SMTI during initial laboratory prototyping program with GTI/OEM/GIT.

> Second “3rd gen.” unit built specifically for field testing, installed at utility employee home 2014.

> Both sites are in Eastern TN:
 ─ Unit 1 in attached garage, with 2-4 occupants
 ─ Unit 2 in semi-conditioned basement, with 3-4 occupants

> While performing well unattended, both units have been under close watch and improvements have been implemented as a result, including:
 ─ Control strategy for cold ambient/water startup
 ─ Adjustments to when backup element is operating
 ─ Investigating options for corrosion inhibitors
Field Test Plan

Additional Gas HPWH Field Demo Sites:

Site #3: Seattle, WA
- 3-4 Occupants
- Semi-conditioned

Site #4: Portland, OR
- 5 Occupants
- Garage

Site #5: Spokane, WA
- 4 Occupants
- Garage

Site #6: Boise, ID
- 5 Occupants
- Garage
Preliminary Results from Sites #1 & #2

Operating conditions and hot water consumption – Weekly Averages
Preliminary Results from Sites #1 & #2

Operating conditions and hot water consumption – Weekly Averages

<table>
<thead>
<tr>
<th>Date</th>
<th>Site #2 - Ambient</th>
<th>Site #2 - Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/5/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/27/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/16/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/5/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/24/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/13/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/2/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/21/15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/12/15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Daily Average Temperature (F)
Preliminary Results from Sites #1 & #2

Operating conditions and hot water consumption – Weekly Averages

![Graph showing operating conditions and hot water consumption for Sites #1 & #2.](image-url)
Preliminary Results from Sites #1 & #2

Heat Pump Performance

> Focusing on abs. heat pump operation, COP is often at high levels observed in prior laboratory testing, 1.4 - 1.8

> Aggregated data over all cycles (~800) show influence of lower ambient temperature on performance

> Site #2 had significant modification, phases 1/2 show pre/post mod.

> COP affected by tank temperature, hot water usage, and other factors
Preliminary Results from Sites #1 & #2

Some slips in startup early on, issues resolved to maximize COP

> A smooth start to the heat pump is critical for high performance, with good (left) and bad (right) readily apparent from the data.
Preliminary Results from Sites #1 & #2

- Aggregating daily input/output data, projected Delivered “EF” is ~ 1.2 and 1.3 respectively for Site #1 and Site #2 units.

- Seeking to reduce impact of standby heat loss to improve results

\[
\text{Input} = m \cdot \text{Output} + b; \quad \frac{\text{Output}}{\text{Input}} = \text{DEF}_{adj} = \left(m + \frac{b}{\text{Output}} \right)^{-1}
\]
Preliminary Results from Sites #1 & #2

Comparing GHPWHs to Conventional Gas Water Heaters

Conventional Gas Water Heater Data from:
Preliminary Results from Sites #1 & #2

Comparing GHPWHs to Conventional Gas Water Heaters

Conventional Gas Water Heater Data from:
Preliminary Results from Sites #1 & #2

Comparing GHPWHs to Conventional Gas Water Heaters

Conventional Gas Water Heater Data from:
What’s Next

GHPWH Field Evaluation

> Collect/analyze data from all units, with add’l installations planned for ’15.
> Wrapup in late 2015 monitoring all field units.
> Understand initial challenges/barriers with homeowners, contractors.
> Share findings with stakeholders.
> Support rounding out of product family, size range, “hybrid”, etc.
Questions & Answers

Gas Technology Institute
1700 S Mount Prospect Rd, Des Plaines, IL 60018, USA
www.gastechology.org

@gastechology
http://www.stonemountaintechnologies.com/