Using the Open Source SorpSim for Simulation of Sorption Water Heating Applications

Zhiyao Yang

Dr. Ming Qu Dr. Kyle R. Gluesenkamp Dr. Omar Abdelaziz

2/28/2017

ACEEE Hot Water Forum, Portland OR

ORNL is managed by UT-Battelle for the US Department of Energy

Content

- Background
- Introduction to SorpSim
- Example in Hot Water Applications
- Conclusion

Background

Sorption systems

- Heat driven systems using affinity of liquid solution (absorption) or solid material (adsorption) to refrigerants to generate heat pumping effect.
- Advantage in heating applications:
 - Heat driven, low electricity consumption;
 - Wide source temperature range: waste heat, solar heat, steam, natural gas burner;
 - Higher efficiency than electric resistance;
 - Zero GWP working fluid;
 - No moving parts except pumps: low noise/vibration.

Background

- Absorption water heating systems
 - Various configurations for heat sources at different temperatures.
 - Simulation of complex cycles remains a challenging task.

SorpSim: Origin

- The Sorption system Simulation program (SorpSim) was developed based on the well-recognized ABsorption SIMulation code (ABSIMW Version 5.0).
- SorpSim combines the built-in component models, fluid properties, and solver subroutines of the legendary code with a versatile graphical interface with enhanced features and functions.
- SorpSim provides a reliable and user-friendly simulation platform that is open-source and compatible across several computer platforms.

SorpSim: Structure

SorpSim: Key Features

Cycle configuration/edit

SorpSim: Key Features

- Cycle configuration/edit
- Result display

	SorpSim-temp.xml – 🗆							×
	File Edit C	onstruct	Calculate Tables	Plots Help				
	6 📂			臡 💪 📃	R Em			
Resu	Results							
State	Points Comp	onents S	System		1			W W
State Point	Temperature [°C]	Enthalpy [kJ/kg]	Mass flow rate [kg/s]	Concentration [%]	Pressure [kPa]	Vapor Fraction [-]		
1	5.433	143.2	0.01777	0	0.8963	0.05		
2	5.433	2510	0.01777	0	0.8963	1		
3	11.56	48.53	2.3	0	0	0		
4	7.2	30.26	2.3	0	0	0		
5	5.433	143.2	0.01777	0	0.8963	0.05		
6	38	93.58	0.45	56.11	0.8963	0		719
7	63.45	145.2	0.45	56.11	5.378	0		/ =42.1kW
8	75.88	178	0.4322	58.41	5.378	0		
9	48.82	124.3	0.4322	58.41	0.8963	0		
10	75.88	2640	0.01777	0	5.378	1		
11	82.22	344.2	3.1	0	0	0		
12	77.72	325.3	3.1	0	0	0		
13	70.26	158.3	0.4524	55.81	5.378	0		
14	34.18	143.2	0.01777	0	5.378	0		
15	29.44	123.3	2.9	0	0	0		.1kW
16	33.1	138.7	2.9	0	0	0		
17	34.18	2563	0.01777	0	5.378	1		
18	29.44	123.3	3.6	0	0	0		
19	33.18	139	3.6	0	0	0		
20	43.08	114.2	0.4304	58.66	0.8963	0		
Green cells are calculated results.								

National Laboratory

SorpSim: Key Features

- Cycle configuration/edit
- Result display
- Parametric table/plot

SorpSim: Available Components

- Components models
 - Built-in governing equations
 - 12 standard components for absorption systems
 - 7 types of liquid desiccant system components

Index	Component
1	Absorber
2	Desorber
3	Heat Exchanger
4	Condenser
5	Evaporator
6	Valve
7	Mixer
8	Splitter
9	Rectifier
10	Analyser
11	Compressor
12	Pump
13-19	Liquid Desiccant Components

SorpSim: Available Working Fluids

- Fluid property library
 - Built-in property correlations for VLE, enthalpy, density, etc.
 - 11 commonly used fluids for absorption systems

Index	Fluid
1	LiBr/H ₂ O
2	H2O/NH3
3	H2O
4	LiBr/H2O/NH3
5	LiBr/ZnBr2/CH3OH
6	СНЗОН
7	LiNO3/KNO3/NaNO3/H2O
8	NaOH/H2O
9	LiCI/H2O
10	Moist Air
11	Flue Gas

SorpSim: Future Expansion

- SorpSim can be used in many application beyond water heating
- Modular structure of program enable convenient expansion of libraries
 - Liquid Desiccant
 - Adsorption
 - More working pair properties
- Open-source guarantees free access and facilitates continuous improvement and development by the sorption research community
 - www.github.com/oabdelaziz/sorpsim

Examples in Hot Water Applications

- Target systems: various absorption cycles using LiBr/H₂O as working fluid
- Operating Conditions
 - DOE energy conservation standard rating condition for consumer water heaters:
 - Hot water supply: 125°F/51.6°C (tank outlet)
 - Hot water return: 58°F/14.4°C
 - Ambient: 67.5°F/19.6°C & 50% rh
- Parametric Analysis
 - T_{amb}, T_{src}, T_{hw}
 COP, Capacity

Parametric Analysis: Source Temperature

• Parametric Analysis: Source Temperature

• Parametric Analysis: Hot Water Supply Temperature

Parametric Analysis: Ambient Temperature

Heat input

Parametric Analysis: Source Temperature

• Parametric Analysis: Source Temperature

Parametric Analysis: Hot Water Supply Temperature

Parametric Analysis: Ambient Temperature

Conclusion

- Sorption technologies hold unique advantages in water heating applications.
- The open-source SorpSim program provides a reliable and convenient platform to facilitate research and development of absorption systems for HW applications.
- SorpSim has been continuously updated, and it will include more ready-to-use template cases, new working pairs, and simulation capability for adsorption systems.
- Examples of absorption water heating cycles in SorpSim demonstrated its capability to conveniently simulate and analyze complex sorption system under various operating conditions.

Acknowledgement

- This work is supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Office, Technology Manager Antonio Bouza
- SorpSim is based on ABSIMW Version 5.0, initiated and developed by Prof. Gershon Grossman of the Technion – Israel Institute of Technology, for the Oak Ridge National Laboratory, under funding of the U.S. Department of Energy Building Equipment Technology Program.

Questions? For more information, please contact:

Zhiyao Yang Building Technologies Research and Integration Center Oak Ridge National Laboratory yangz2@ornl.gov

Kyle Gluesenkamp, PhD Building Technologies Research and Integration Center Oak Ridge National Laboratory

ANY DESCRIPTION OF TAXABLE PROPERTY OF

gluesenkampk@ornl.gov

