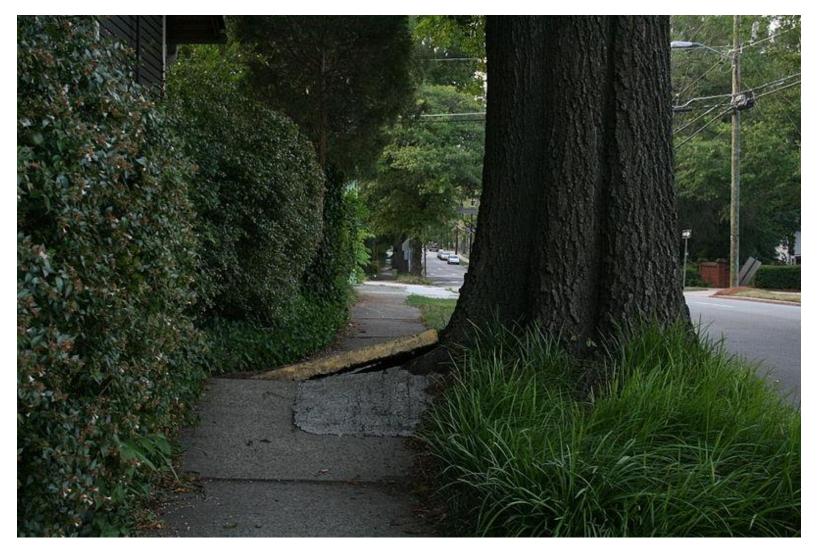
Standard modular interface improves customer experience

Conrad Eustis March 21, 2018

Portland General Electric is a fully integrated energy company based in Portland, Oregon serving approximately 862,000 residential, commercial and industrial customers in 51 cities.

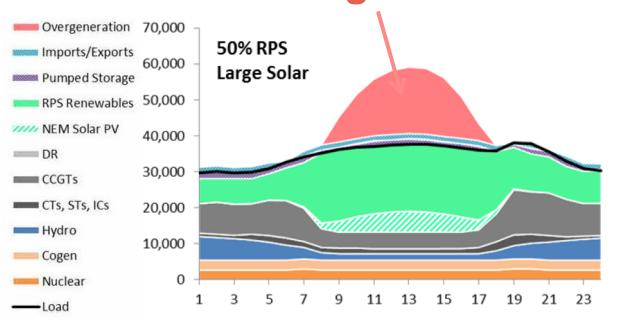
Diverse generation mix


16 major generation plants providing a cleaner energy future

Quick facts about PGE

- 2,750 employees
- Retail customers 862,764
 - o Residential 756,675
 - C&I 105,826
 - o 44% of State's Population
- 18.9 million MWh delivered
- Peak load: Dec. 21, 1998 4,073 MW
- Summer Peak 2017 3,972 MW
- No. 1 renewable power program in the nation with 150K participating customers
- Top ranking in JD Power 2017 Electric Utility Business Customer Satisfaction Study
- First multi-MW Li-Ion battery-inverter system placed in operation by a US utility

PNW needs flexible loads


Photo Credit: Ildar Sagdejev http://commons.wikimedia.org/wiki/Fil e:2008-06-28 Broken sidewalk.jpg

PNW customers want 100% renewable generation but >30% (wind & solar) means Overgeneration

- Solar & wind produce energy in limited hours
- Output varies
- Energy with no place to go

 California at 31% in 2017

Reference: *Investigating a Higher Renewables Portfolio Standard* **[RPS]** *in California*, Energy and Environmental Economics, Inc., 101 Montgomery St. San Francisco, CA 94104. Jan 2014

Barriers to Residential DR at scale

Customer perspective

- 1. Difficult customer experience
- 2. Concern that lifestyle won't be affected
- 3. Basic \$ incentive not enough motivation for many

Utility perspective

4. Cost to physically connect one device

5

R

Credit: http://maxpixel.freegreatpicture.com

NW regional pilot objective: Demonstrate solutions

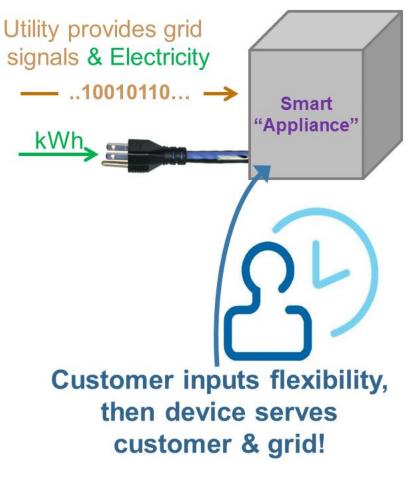
Participants

- Project funding:
- Project Leads:
- Suppliers:

- \$1 million BPA TI 336 (BPA labor & cost share not included) Tony Koch, BPA & Conrad Eustis, PGE
- Primary BPA Support Staff: Eva Urbatsch & Phillip Kelsven,
 - A.O. Smith, General Electric, e-Radio
- Major Support Organizations: NEEA (Geoff Wickes) & PNNL (Cheryn Metzger)

Utility Participants:

- 1. Portland General Electric
- Tacoma Power 2.
- Puget Sound Energy 3.
- **Clark Public Utilities** 4.
- **Emerald PUD** 5.
- Snohomish PUD 6.
- 7. Springfield Utility Board
- Franklin PUD 8.


Objectives

- 175 heat pump water heaters.
- 90 resistance water heaters
- 24x7 Control, 365 days/yr.
- Quantify
 - peak load mitigation
 - energy shifting
- Customer acceptance
- Regional education
- Market transformation plan
- Bus. case to justify MT plan
- Anticipate > 3:1 benefit/cost

Vision behind project

- Imagine standard port on each appliance
- Appliance designed to receive utility signals via standard data format
- Manufacturer provides simple way for customer to define their flexibility
- Control logic in device maximizes grid benefit, but ensures customer needs met
- This solution solves barriers 1, 2, & 4

Project uses smart water heaters

"Smart" =

- modular communication interface
- Standard control language
- OEM defines DR response
- DR commands ignored to maintain sufficient hot water

Low Cost only if:

- Standard Physical Socket (e.g. CTA-2045, USB, etc.)
- Standard format for data packets
- Standard initial exchange of information

Does NOT depend on DR language

"Smart" Status:

- Only 5 to 10% of tanks sold
- All have proprietary interfaces
- Ready; but need smart adapter

Photo Credits: General Electric and A.O. Smith

Imagine the customer cost and hassle if....

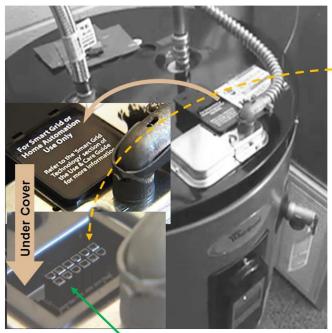
 Every computer manufacturer had unique sockets that didn't look like this.

Connected devices deliver that hassle today

Smart = improved customer experience

Set & Forget Design

Today


- Easy for customer to curtail grid control
- Logic ensures hot water supply

Tomorrow

- Input for more comfort or more savings
- Learns peak hot water demand periods

Improved customer setup & future proof

ANSI/CTA-2045 socket on tank

Problems with Wi-Fi

- Must setup Wi-Fi password
- Customer nagged to reconnect
- 20% of US homes no Internet
- Can be hacked

Like USB, Customer plugs_the comm device into socket on tank

Example of communication device from e-Radio

Plug in and forget

- 5G (the future of IoT)
- Secure broadcast
- Proprietary link to HEMS
 Customer can change any time

ANSI/CTA-2045

"plug" on

communication

device

e - Radio

Open-in-cloud vs. open-at-device

- Open-in-the-cloud means home run to the device maker to interact with any 3rd party
- 3rd party needs legal agreements with every device maker to simplify customer experience.
- Open-at-device means customer is charge, and any architecture is possible

Vendor Vision

Consumer or Automation Vision

Photo credit EPRI

Design affects customer experience

Open-at-device; modular interface

- Supports grid control without using internet
- Supports participation without needing customers internet or passwords
- Supports easy use of 3rd party HEMS
- Future proof against 5G IoT architectures and business models
- Security fixes never involve device

Open-in-cloud

- Requires 3rd parties, like DR aggregators of utilities, to have agreements with 50+ device makers
- In major disaster, loss of Internet means loss of in-home energy management
- More revenue opportunities for device maker

Standard solves barrier #4

Control Method => Install Component	Control Box	CTA2045 on Tank
Factory tank modification	none	\$15 (in volume; only \$1 for heat pump WH)
Control box	\$100	none (uses tank controls)
Communication device	included above	\$50 -> \$10 (in volume)
Installation & materials	\$175 (\$25 (average) for aborted starts)	\$0 (customer-installed)
Join program incentive	\$50 (to leave work to meet installer)	\$0
Reserve to remove unit	\$50	\$0
Marketing	\$M	50%* \$M
Permit	\$15	\$0
Total	\$390 +\$M	\$80 [*] -> \$40 + 0.5*\$M
	\$\$\$\$ \$\$\$\$	*Assumes 1 in 2 adoption

Societal Benefits

PGE

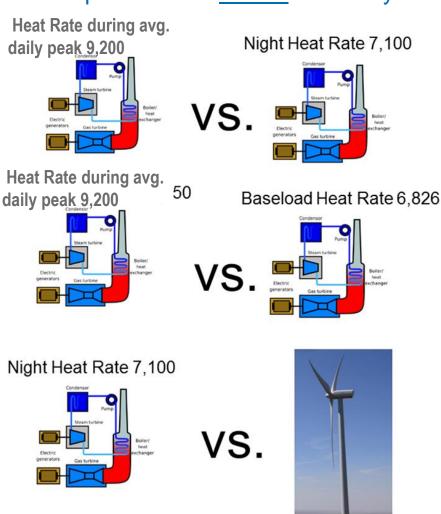
Water heater benefits as Flex Powerplant

- Expected peak demand benefits
 - HPWH
 - 0.18 kW load reduction;
 - 1.5 kWh as storage (twice a day)
- Resistance
 - 0.35 kW load reduction;
 - 3 kWh as storage (twice a day)

• 24x7 ops reduces natural gas use at powerplants

~ 2.9 million Btu per water heater/year used as flex resource

Portland General Electric 19


Daily control saves system energy

In 21st century, system energy savings more important than device efficiency

Assume 3 kWh stored per tank on 344 days per year

- Daily Economic Dispatch on 180 days yields 1.1 mmBtu/year saved
- Wind firming on 114 days yields
 0.8 mmBtu saved
- Sink excess renewables on 50 day yields 1.0 mmBtu saved

2.9 mmBtu saved can generate >390 kWh at the meter

Northwest potential

• Market:

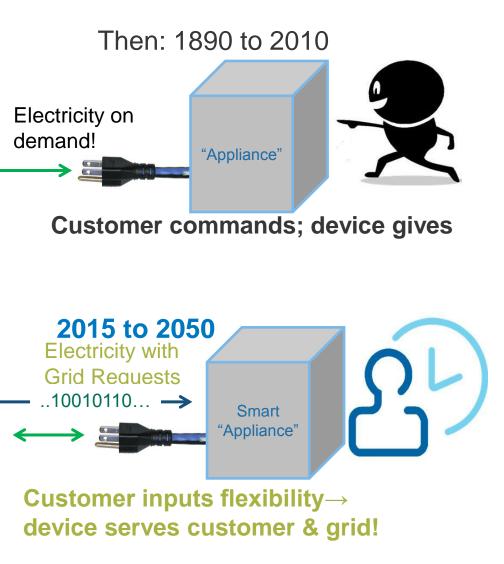
- 3.5 million WH
- Likely benefits (adoption at 50%)
 - After fifteen years (0.3 kW per tank)
 - 500 MW resource ~ \$500 million
- Cost (customer adoption at 50%)
 - \$15 per tank + \$1 mil in engineering per manufacturer
 - \$60 per enrolled tank (comm device and recruitment)
 - Accumulated cost after 15 years = \$150 million (B/C = 3.0+)
- Daily storage benefit
 - ~ 2 kWh <u>without</u> mixing valve
 - 3,500 MWh at \$300/kWh = \$1.0 billion in value cf. to battery

Credit: http://www.publicdomainpictures.net/view-image.php

?image=145778&picture=business-success

Questions

Conrad Eustis


Conrad.eustis@pgn.com 503 464 7016

New concept

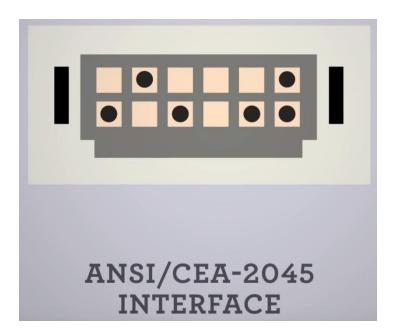
For first 120 years

- Energy flows one way to customer
- Customer loads and generation serve best interests of customer
- By 2008, renewables at scale everyone talks about storage
- By 2010, Idea: many loads can respond to price and control signals to help integrate renewable generation.
- No word describes concept

Word for an emerging concept

In 2050 need most loads and distributed generation to be *alonetic*

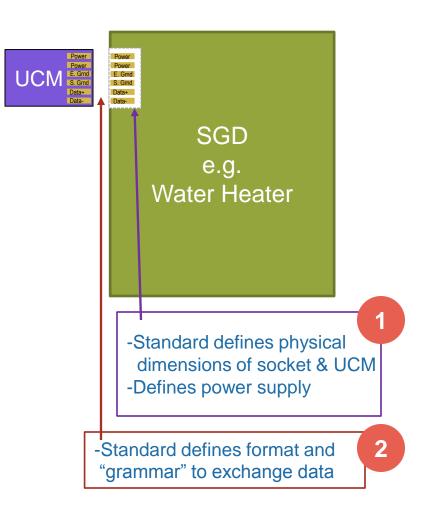
- Word created in 2014
- <u>Opposite</u> of alonetic is egonetic which is the behavior of today's devices


Alonetic, adjective ăl • ō • nět' • ĭk

- alo- from Latin "to support"
- "net" as in the "electric grid network";
- -ic of, or pertaining to

Definition: The ability of an electric device to beneficially support operation of the electric grid

ANSI/CTA-2045 to the rescue


- CTA-2045 is the "one" and it's gaining momentum
- Creates consistent customer experience
- Enables simple implementation for provider
- Standard creates volume for <u>hardware</u>, volume creates low cost

https://www.youtube.com/watch?v=BHMssq6_R94

CTA-2045 is 3 standards, 2 required

- The "appliance" is called a Smart Grid Device
- The Universal Communication Device does not come with the appliance; the service provider chooses the type of communication link: e.g. Wi-Fi, mobile carrier, etc.
- The UCM "speaks" whatever language the SGD does, e.g. OpenADR, but defaults to a shed command defined by CTA-2045 if the appliance doesn't speak a standard language

CTA-2045 enables other standards

- "I don't want responsibility to pick a standard."
- Four requirements for human communication
 - 1. Same language:
 - 2. A conveyance method:
 - 3. Standard grammar:
 - 4. Physical apparatus:

English, Chinese, Arabic, etc.

Letter, email, phone, pigeon, etc.

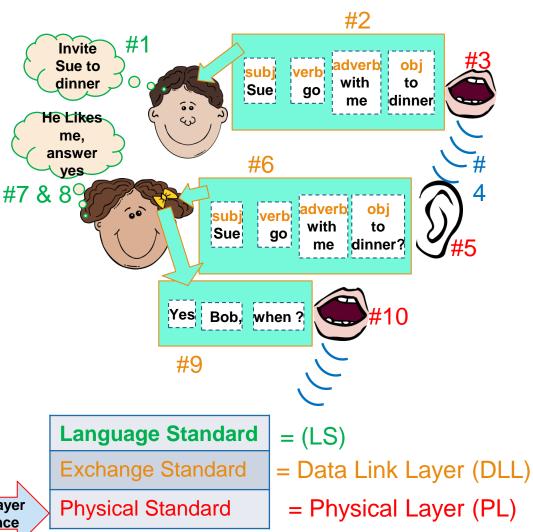
The Elements of Style

Eyes, ears, & voice box

Which two are the must haves?

CTA-2045 is the only standard that provides the must haves, and enables any combination of the other two!

ANSI/CTA-2045


Physical layer

- Standard form factor
- Standard physical process (RS-485 or SPI)
- Provides standard power supply
- Data link layer (Exchange rules: "i" before "e" except after "c")
 - Negotiates language to speak
 - SEP, OpenADR, BACnet, Proprietary, CTA-2045
 - TCP/IP pass through
 - Data format
 - ACK, NAK
- Optional application layer (except)
 Shed & return-to-normal required

Information flows through "layers", each requires a standards

- 1. LS: Bob conceives msg.
- 2. DLL: construct msg.
- 3. PL: create msg.
- 4. → physical conveyance
- 5. PL: Sue Hears msg.
- 6. DLL: Deconstruct msg
- 7. LS: processes msg.
- 8. LS: conceives response
- 9. DLL: constructs response
- 10. PL: creates response

