Experimental Results: Gas-fired Membrane-based Semi-open Sorption Water Heater

Kyle Gluesenkamp Ahmad Abu-Heiba Devesh Chugh Saeed Moghaddam

ACEEE Hot Water Forum, Portland March 22, 2018 Session 4A: Dev. in gas HPWHs

ORNL is managed by UT-Battelle for the US Department of Energy

<u>ition</u>al Laboratory

Acknowledgments

- Department of Energy (Contract DE-EE0006718.00)
- DOE Building Technology Office
 - Antonio Bouza
 - Jim Payne
 - Michael Geocaris

Outline

- Motivation
- What is a sorption heat pump
- What is a *semi-open* sorption heat pump
- Experimental results from prototype semi-open system

Experimental Results

- Heating capacity: 700 1400 W
- Typical uncertainties: 6-8% of COP; 3% of capacity

*Gen 1: Chugh, Devesh; Kyle R. Gluesenkamp, Omar A. Abdelaziz, Saeed Moghaddam (2017). "Ionic liquid-based hybrid absorption cycle for water heating, dehumidification, and cooling", *Applied Energy*, 202, 746-754.

Gas HPWH Motivation: Primary Energy

- Gas HPWHs: highest primary efficiency vs. other gas tech.
- Cost and novelty are current barriers R&D needed

Gas HPWH Motivation: Primary Energy

- Gas HPWHs: highest primary efficiency vs. electric tech.
- Cost and novelty are current barriers R&D needed

Vision: New Cost Effective Gas Option

Retrofit installations

National Laboratory

What is a Thermally Driven Heat Pump?

T: temperature

Q: heat flow

Source: Kuhn, A. (ed.) Thermally driven heat pumps for heating and cooling (2013)

What is a Sorption Heat Pump?

Source: http://www.annex34.org/the-magic-of-thermal-cooling

Sorption Technologies

Regeneration temperature [°C]

Adapted from: K. Gluesenkamp and R. Radermacher, "Heat Activated Cooling Technologies for Small and Micro CHP Applications," in *Small and Micro CHP Systems*, R. Beith, Ed., ed Cambridge, UK: Woodhead Publishing Ltd., 2013.

Semi-open Sorption Architecture

AK

National Laboratory

Key Component: Semi-open Absorber

Open Absorption Water Heater

Main Benefit

Significant cost reduction compared with traditional sorption

Component	Traditional closed sorption	Semi-open sorption
Vessel materials	Carbon steel	Polymer
Solution pump	Hermetic, with hydrostatic plus 1–15 kPa variable head	Nonhermetic with constant hydrostatic head
Vacuum requirements	Periodic vacuum pumping	None
Vessel pressure rating	Must withstand full vacuum (34 ft)	Only hydrostatic pressure differentials (~2 ft)
Evaporator	Required	Not required

K. Gluesenkamp, D. Chugh, O. Abdelaziz, and S. Moghaddam, "Efficiency Analysis of Semi-Open Sorption Heat Pump Systems," Renewable Energy, 2016.

Prototype Evaluation at ORNL

Absorber assembly

Prototype Generations

Generation 1:

Generation 2:

Experimental Results

- Heating capacity: 700 1400 W
- Typical uncertainties: 6-8% of COP; 3% of capacity

*Gen 1: Chugh, Devesh; Kyle R. Gluesenkamp, Omar A. Abdelaziz, Saeed Moghaddam (2017). "Ionic liquidbased hybrid absorption cycle for water heating, dehumidification, and cooling", *Applied Energy*, 202, 746-754.

Energy Flows in System

Gluesenkamp, K. (2016). "Energy Factor Analysis for Gas Heat Pump Water Heaters", ASHRAE Annual Meeting 2016, June 29, 2016, St. Louis, MO.

UAK KIDGE

National Laboratory

Ш

Ш

Gluesenkamp, Kyle R.; Yang, Zhiyao; Abdelaziz, Omar. "Translating cycle performance to system-level efficiency for sorption heat pumps." 12th IEA Heat Pump Conference 2017, Rotterdam, Netherlands, May 15–18, 2017.

National Laboratory

Gluesenkamp, K. (2016). "Energy Factor Analysis for Gas Heat Pump Water Heaters", ASHRAE Annual Meeting 2016, June 29, 2016, St. Louis, MO.

References

- Gluesenkamp, K., Chugh, D., Abdelaziz, O., and Moghaddam, S., "Efficiency Analysis of Semi-Open Sorption Heat Pump Systems," *Renewable Energy* (in press).
- D. Chugh, K. Gluesenkamp, O. Abdelaziz, and S. Moghaddam, "A hybrid absorption cycle for water heating, dehumidification, and evaporative cooling.," in ASME InterPACKICNMM2015, 2015, p. 9.
- Gluesenkamp, K. (2012). Development and Analysis of Micro Polygeneration Systems and Adsorption Chillers. Dissertation University of Maryland.
- Chugh, D., Nasr Isfahani, R., Gluesenkamp, K., Abdelaziz, O., Moghaddam, S. "A novel absorption cycle for combined water heating, dehumidification and evaporative cooling," *International Sorption Heat Pump Conference*, March 31 – April 3, 2014, College Park, MD.
- S. Moghaddam, Thin Film-based Compact Absorption Cooling System, WO Patent 2,013,063,210, 2013.
- S. Moghaddam, D. Chugh, R. Nasr Isfahani, S. Bigham, A. Fazeli, D. Yu, M. Mortazavi, and O. Abdelaziz, Open Absorption Cycle for Combined Dehumidification, Water Heating, and Evaporating Cooling, Patent Application WO/2015/116362, PCT/US2015/010757.
- S. Moghaddam and D. Chugh, Novel Architecture for Absorption-based Heaters, Patent Application UF-14697, 2013.

Discussion

Kyle Gluesenkamp gluesenkampk@ornl.gov

Visit our website: www.ornl.gov/buildings

Follow us on Twitter: @ORNLbuildings

Experimental System Diagram

Theoretical Efficiency Established

Gluesenkamp, Kyle R., Devesh Chugh, Omar Abdelaziz, and Saeed Moghaddam (2017). "Efficiency Analysis of Semi-Open Sorption Heat Pump Systems," *Renewable Energy* 110, 95-104.

Efficiency Expected by Theory

Parameter	Measured value in prototype
h _m	$4.9 \times 10^{-2} \text{ g}^{1}\text{m}^{-2}\text{s}^{-1}\text{kPa}^{-1}$
U _{air}	$2.67\pm 0.15 \ W^{1}m^{-2}K^{-1}$
U _{soln}	$28.6 \pm 1.7 \ W^{1}m^{-2}K^{-1}$

Efficiency can be lower or higher than conventional closed absorption cycle, depending on ambient temperature

Contours of heating COP for closed and semi-open cycles at various ambient conditions.

Gluesenkamp, K., Chugh, D., Abdelaziz, O., and Moghaddam, S., "Efficiency Analysis of Semi-Open Sorption Heat Pump Systems," *Renewable Energy* (in press).

Research Opportunities

Performance improved by lower air side heat transfer...

Gluesenkamp, K., Chugh, D., Abdelaziz, O., and `Moghaddam, S., *Renewable Energy* (in press).

National Laboratory

Research Opportunities

... and higher moisture mass transfer.

Higher membrane permeability at fixed $U_{air} = 2.667 W^{1}m^{-2}K^{-1}$ leads to better performance

National Laboratory

Gluesenkamp, K., Chugh, D., Abdelaziz, O., and `Moghaddam, S., *Renewable Energy* (in press).

Experimental Results

- Heating capacity: 700 1400 W
- Typical uncertainties: 6-8% of COP; 3% of capacity

*Gen 1: Chugh, Devesh; Kyle R. Gluesenkamp, Omar A. Abdelaziz, Saeed Moghaddam (2017). "Ionic liquid-based hybrid absorption cycle for water heating, dehumidification, and cooling", *Applied Energy*, 202, 746-754.

