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Experimental Results
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- Typical uncertainties: 6-8% of COP; 3% of capacity
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*Gen 1: Chugh, Devesh; Kyle R. Gluesenkamp, Omar A. Abdelaziz, Saced Moghaddam (2017). “Ionic liquid-
based hybrid absorption cycle for water heating, dehumidification, and cooling”, Applied Energy, 202, 746-754.
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Gas HPWH Motivation: Primary Energy

Hot PER = EF
Gas WH
Water prp ~ 0.65 — 0.95

Losses

Gas Hot PER = EF
HPWH water PER~1.0—-1.5

Losses

« Gas HPWHs: highest primary efficiency vs. other gas tech.
« Cost and novelty are current barriers — R&D needed
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Gas HPWH Motivation: Primary Energy
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« Gas HPWHSs: highest primary efficiency vs. electric tech.
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Vision: New Cost Effective Gas Option

Retrofit installations
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What is a Thermally Driven Heat Pump?

T. temperature
Q: heat flow
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Source: Kuhn, A. (ed.) Thermally driven heat pumps for heating and cooling (2013)
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What is a Sorption Heat Pump?
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Source: http://www.annex34.org/the-magic-of-thermal-cooling
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Semi-open Sorption Architecture
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Qc %Qd
Q. %a
Condenser = Desorber
Condenser |= Desorber
; SHX Condensate
H-0 /
Ke
Evaporator =| Absorber Vapor Compo¥1ent
g o, o, Q;
- T

%OAK RIDGE

National Laboratory



Key Component: Semi-open Absorber
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Open Absorption Water Heater

Solution

— Oil

Solution

Process water
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Main Benefit

Significant cost reduction compared with traditional sorption

Component Traditional closed Semi-open sorption
sorption

Vessel materials Carbon steel Polymer

Solution pump Hermetic, with Nonhermetic with
hydrostatic plus 1-15 constant hydrostatic
kPa variable head head

Vacuum requirements Periodic vacuum None
pumping

Vessel pressure rating Must withstand full Only hydrostatic
vacuum (34 ft) pressure differentials

(~2 ft)
Evaporator Required Not required

K. Gluesenkamp, D. Chugh, O. Abdelaziz, and S. Moghaddam, "Efficiency Analysis of Semi-Open Sorption
Heat Pump Systems," Renewable Energy, 2016. %OAK RIDGE
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Prototype Evaluation at ORNL
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Prototype Generations

Generation 2:

Generation 1:
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*Gen 1: Chugh, Devesh; Kyle R. Gluesenkamp, Omar A. Abdelaziz, Saced Moghaddam (2017). “Ionic liquid-
based hybrid absorption cycle for water heating, dehumidification, and cooling”, Applied Energy, 202, 746-754.

¥ OAK RIDGE

‘. National Laboratory

85



Energy Flows in System

Control volume around packaged heat pump water heater system
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Gluesenkamp, K. (2016). “Energy Factor Analysis for Gas Heat Pump Water Heaters”, ASHRAE Annual Meeting 2016, June 29, 2016, St. Louis, MO.
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Experimental System Diagram
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Theoretical Efficiency Established
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Efficiency Expected by Theory

Parameter | Measured value in
prototype

4.9 x102 g'm=—2s~'kPa™"
» 2.67 + 0.15 Wm=2K-"
T 28.6 + 1.7 Wim2K""

>

Efficiency can be
lower or higher than
conventional closed
absorption cycle,
depending on
ambient temperature
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Research Opportunities

Performance improved by lower air side heat transfer...
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Research Opportunities

.. and higher moisture mass transfer.
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based hybrid absorption cycle for water heating, dehumidification, and cooling”, Applied Energy, 202, 746-754.
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