gti.

Recent Lab Testing of Tankless Units: Evaluating Performance and Reliability

Alex Fridlyand, Ph.D. Gas Technology Institute

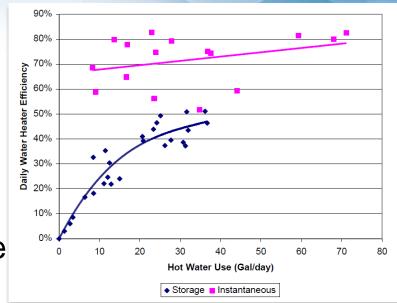
Presented at 2019 ACEEE Hot Water Forum March 12th, 2019

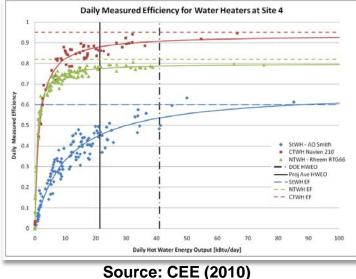
Presentation Scope

- New project with NEEA
 - -No conclusions yet / lots of hypotheses
 - -Feedback from audience welcome
- Motivation and background for the project
- Project objectives and approach
- Early results preview and next steps

Opportunity

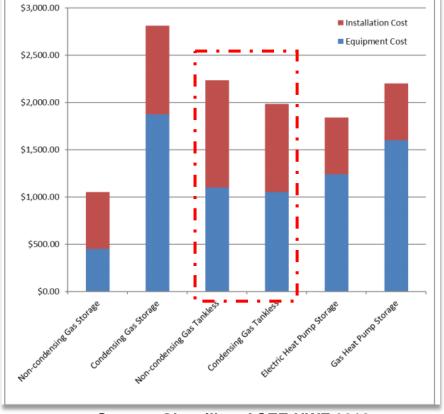
- Water heating in the Pacific Northwest (according to RBSA 2017)
 - -Use of gas for water heating up $(43 \rightarrow 49\%)$
 - Fraction of tankless increasing, however...
 - 81% non-condensing storage (EF/UEF < 0.7 in most cases)
 - Only 6% condensing tankless (4% non-condensing)
- Story is similar at the national level
- Gas HPWH (UEF > 1) are on their way...
- Tankless (min UEF = 0.81) could provide significant energy savings in the interim



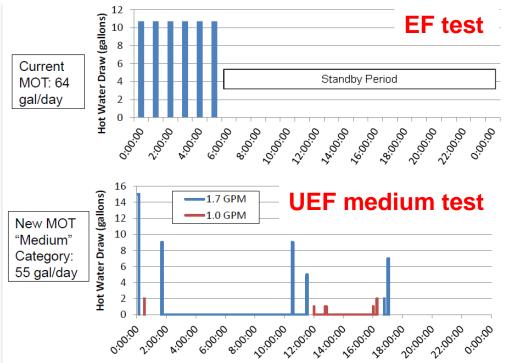


Prior Work and Motivation

- Most recent studies date back 6-10+ years
- Energy savings potential:
 - -20-30% projected energy savings vs NC storage
 - EF rating inadequate for estimating energy savings
 - -TWH energy efficiencies 8-10% lower than EF
 - TWH performance depends on hot water draw characteristics



Prior Work and Motivation


- High installation costs consistently identified as a significant barrier in retrofits
 - Power/direct venting new penetration (\$)
 - Power outlet (\$)
 - Gas line upgrades (\$\$)
- \$2000-3000+ installed cost, compared to \$1000-1500 for non-condensing storage
- Payback periods of ~20+ years in retrofits

Source: Glanville – ACEE HWF 2018

Product and Market Changes

- In the last 10 years:
 - Roll out of the UEF rating method (~2015) implemented more realistic draw patterns
 - NFPA 54 National Fuel Gas Code changes (~2012):
 - Can use ½" gas lines up to 40 ft-eq for 200 MBH, with a 3 inWC pressure drop
 - Need 8 inWC gas supply
 - Balance of distribution system must have sufficient capacity

Source: Glanville ACEEE HWF 2015

Product and Market Changes

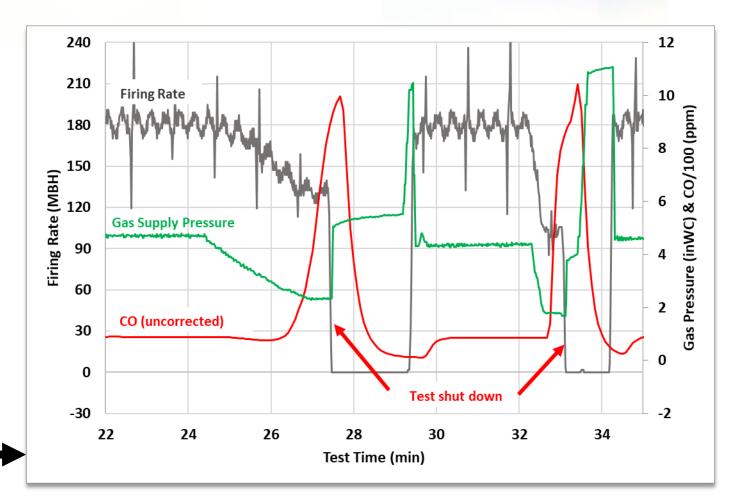
- New products targeting retrofits:
 - $-\frac{1}{2}$ " gas line capability
 - Vertical water connections
 - -Small diameter PVC venting
 - Improved delivered temperature delay
- Not all OEMs have embraced ½" gas line capability
 - Still recommend a dedicated gas line

Questions and Hypotheses (feedback welcome)

- What are these new ½" capable products?
- What are their operating characteristics and limitations when utilizing ¹/₂" gas lines?
- Do the new products have improved energy savings potential?
- Do the new products have reduced installation costs and therefore improved payback periods?
 - If not.., what are the current cost barriers?
 - -What is the installer experience with the new products?
- Approach: Laboratory evaluation, survey of installers, techno-economic analysis

Laboratory Evaluation – Operating Characteristics

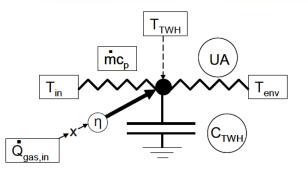
- Objective: Verify rated performance of ½" tankless products, identify any limitations, and map their performance
 - Uniform Energy Factor at minimum required pressure
 - If using ½" gas lines, likely operating near minimum required pressure
 - Stress test a sub-sample of products at adverse pressure conditions

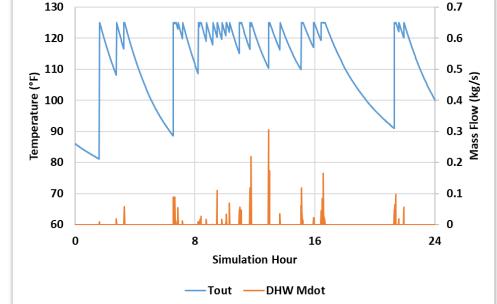


Laboratory Evaluation – Results Preview

Verification

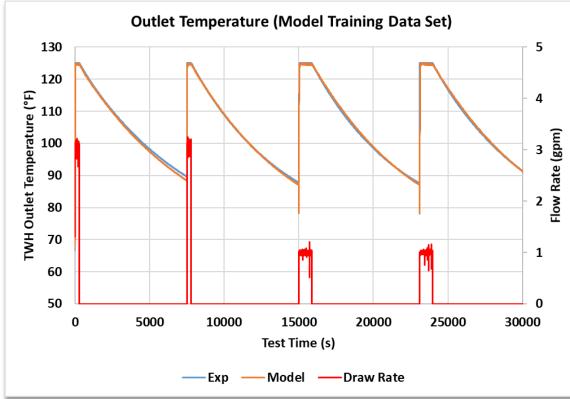
- 180 MBH, UEF 0.82, 4.5 max
 gpm (AHRI) tankless
- Installed with ~4.5 inWC gas supply at max fire (4 inWC min required)
- 24-hour UEF test results:
 - UEF = 0.81, 4.4 max gpm
 - Gas supply >5 inWC for the duration of the test
 - No issues if installed properly
- Stress Test (improper install)

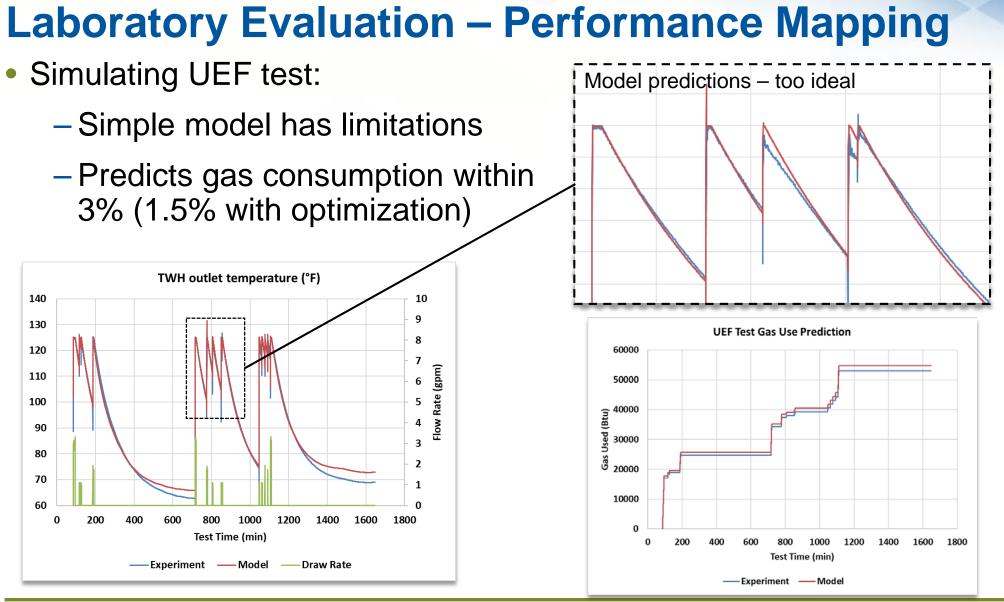

Laboratory Evaluation – Performance Mapping


 Performance mapping enabled by lumped heat capacity (LHC) model (Burch et al NREL - 2008)

 $-C * \frac{dT_{\text{TWH}}}{dt} = \eta \dot{Q}_{\text{gas}} - \dot{m}c_p(T_{\text{TWH}} - T_{in}) - \frac{UA}{V} * (T_{\text{TWH}} - T_{env})$

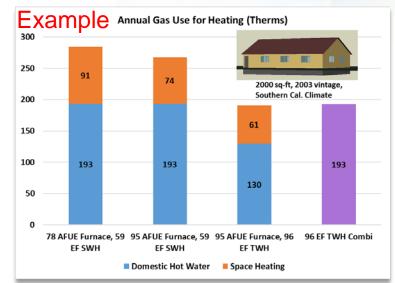
- -C thermal capacitance,
- $-\eta$ steady state efficiency,
- -UA standby loss coefficient

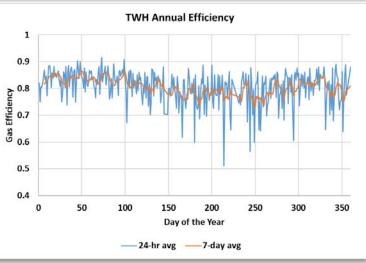




Laboratory Evaluation – Performance Mapping

- Simple tests to determine parameters
 - -Ramp up, steady fire, environmental decay
- Preliminary results:
 - 180 MBH, UEF 0.82 TWH:
 - *C* = 3.43 Btu/°F
 - η = 84.4%
 - UA = 2 Btu/hr-°F
 - Needed ~20% over-fire factor when heating up HX
 - Gas consumed within 0.6% of experiments





Recent Lab Testing of Tankless Units: Evaluating Performance and Reliability – 2019 ACEEE Hot Water Forum

Energy Savings and Market Potential Analysis

- Integrate LHC with EnergyPlus to:
 - Estimate energy savings for different:
 - Climates (mains temperatures)
 - Usage cases (small and larger homes)
 - Integrated into a combi model (tomorrow's talk)
- LHC first suggested ~10 years ago
 - Few published thermodynamic parameters
 - This study aims to provide more 4-5 brands, popular models



Energy Savings and Market Potential Analysis

- Balance of the project:
 - Review of national and local codes
 - Survey of plumbers/installers
 - What are still the major barriers?
 - What is their experience with 1/2" tankless?
 - What are they charging for installations?
 - Updated techno-economic analysis
 - Have paybacks improved?
 - Are the energy savings improved?

www.gti.energy | 🈏 @gastechnology

- Further questions?
 - -afridlyand@gti.energy
- Work supported by:

- GTI Project team:
 - Miroslaw Liszka, Merry Sweeney, Paul Glanville

