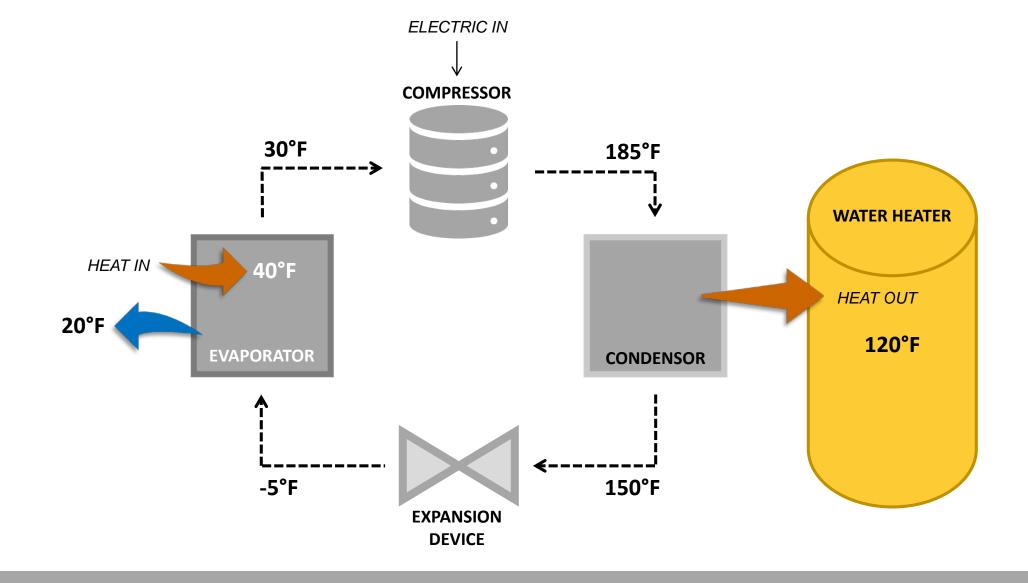
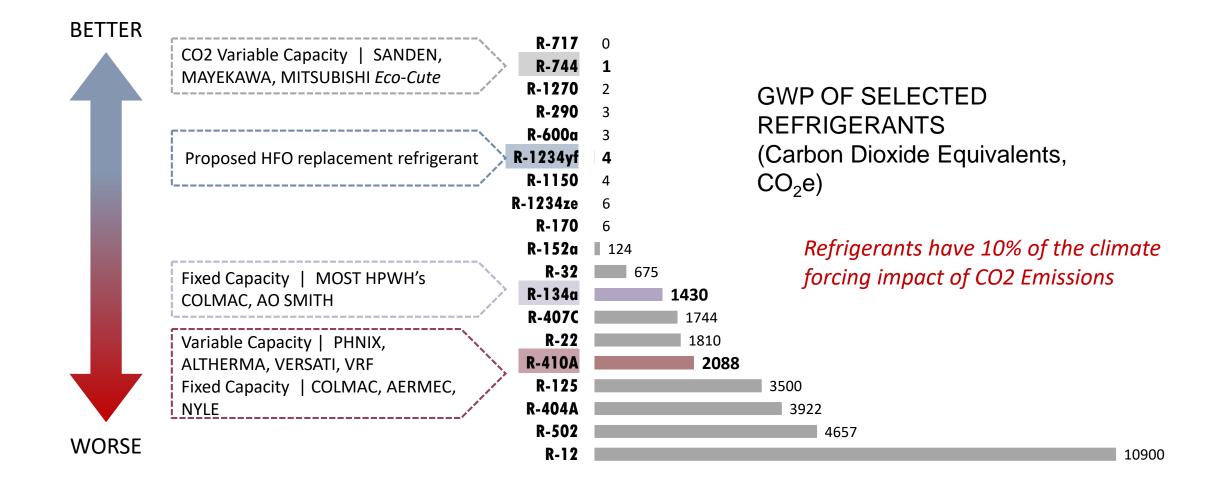
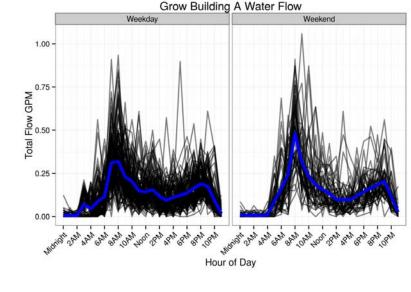

Hot Water Forum - 2019

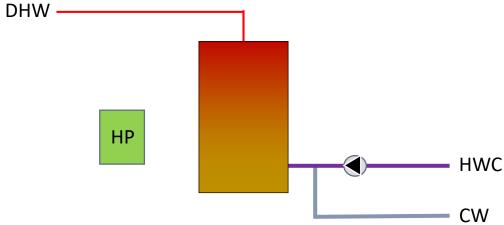
Central Heat Pump Water Heating with 3 Case Studies


Shawn Oram, P.E., LEED AP Director of Engineering and Design



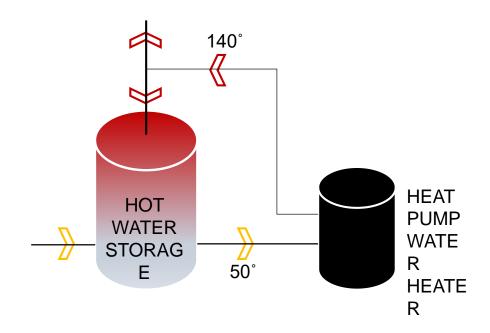
Multifamily Energy End Uses – Seattle Climate




Heat Pumps MOVE Heat

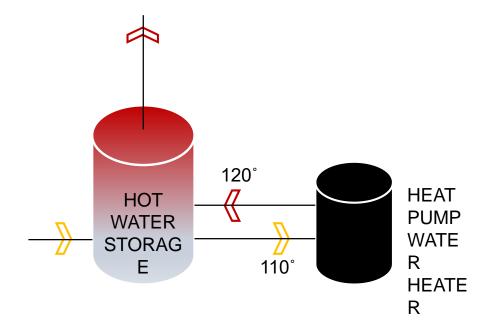
Central Heat Pump Water Heater Overview

Refrigerant Types


Hot Water Load

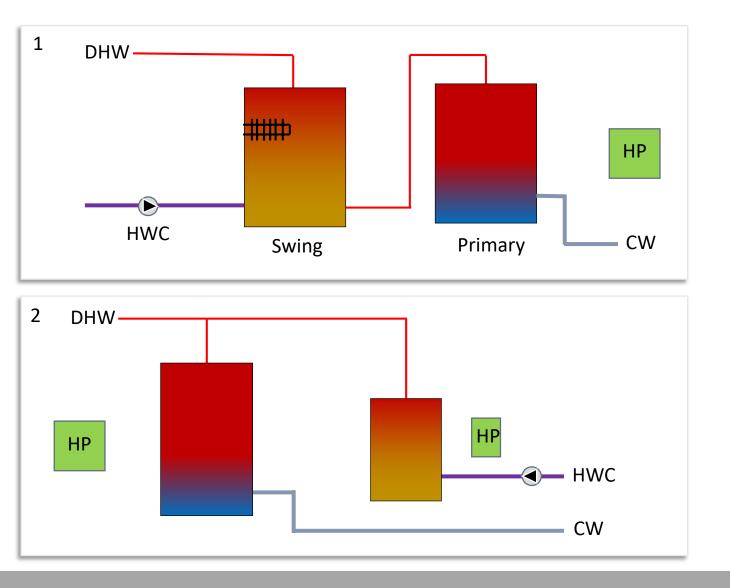
- Hot water load, sized for morning and evening peak draws
- Typical design is small heat pumps and large storage
- Heat pump sized to make all the water needed in the determined amount of production time

Temperature Maintenance


- o 24/7, 365 day load keeping lines hot
- Ranges from 50-400 Watts/apartment
- Recirculation load is hard to calculate accurately
- Dependent almost entirely on piping and plant UA and flow
- Since the load is continuous, the heat pumps need to be able to match the load, oversizing can be problematic

Two Different Loads in a Building,

Single Pass


Heats up Water to working temp in single pass

Multi-Pass

Heats up water to working temp in multiple pass

Single Pass or Multi-Pass

PROBLEM

Recirculation return temps are too high and flowing too fast for single pass heat pumps and storage.

- Degrades system COP significantly
- Can destroy stratification
- Makes Load Shift Difficult

SOLUTIONS

Option 1. Primary Storage feeding Swing Storage

- Make 150F water, Main storage feeds into swing tank.
- Add resistance coil to swing tank
- Single pass heat pump never sees recirc flow

Option 2. Dedicated TM Heat Pump Plant

- Primary plant is single-pass
- Secondary HWC plant is multi-pass

Temperature Maintenance and Single Pass

Central Heat Pump Water Heating Products

Variable Capacity (4) | PHNIX, ALTHERMA, VERSATI, VRF (Mitsu and LG)

Fixed Capacity (4) | COLMAC, NYLE, TRANE, CARRIER, MULTISTACK

R-410a Refrigerant Heat Pumps

- Colder Temperature range
- Designed for space heating, we use for DHW
- Inverter: -5F to 110F entering air
- Defrost Starts around 38F
- Water Temp 120F possible
- Vapor injection technology can make 140F, COP hit.
- Requires additional double wall heat exchanger
- COP 2.5 in Seattle for DHW production
- Can do temp maintenance and water heating
- VRF Hydronic COP 1.8-2.0 in Seattle for DHW

Refrigerant Types | Currently Available

R-410a

Mostly Fixed Capacity | Most Integrated HPWH ("hipwa"), COLMAC, AO SMITH, NYLE

R-134a Refrigerant Heat Pumps

- Warmer Air Temperature range
- Designed for DHW
- Constant Volume: 40F to 110F entering air
- Defrost Starts around 45F EA
- Water Temp 130-160F possible
- Includes Double Wall Heat Exchanger
- Single Pass Water Heating in BG Garage- COP 2.7 Seattle
- Temperature Maintenance in BG Garage COP 2.5 Seattle
- Available as Single or Multi-pass
- Temperature maintenance with single
- Available with communicating controls

Refrigerant Types | Currently Available

R-134a

CO₂ Variable Capacity

SANDEN (1.25 Ton)

R-744 (CO2) Refrigerant Heat Pumps

- Entering Air Range -25 to 110 F
- Inverter Driven Compressors
- Available as Single Pass only
- Designed for DHW
- Water Temp 150F and 190F possible
- Technically does NOT require double wall (CO2)
- Water Heating COP 3.2
- Temperature Maintenance Challenging

Refrigerant Types | Currently Available

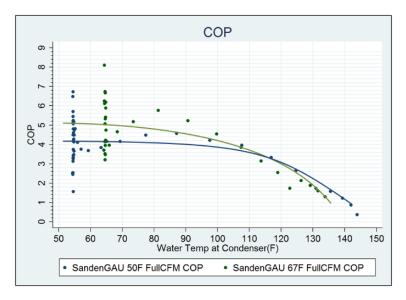
CO₂ Variable Capacity (Available Internationally)

Mayekawa (22T), Mitsubishi (11T), MHI (8T), Itomic (3, 7, 22T), Sanden (larger 4.2T)

R-744 (CO2) Refrigerant Heat Pumps

- Entering Air Range -14F to 110 F
- Inverter Driven Custom Compressors
- 1400+ PSI rated components
- Single Pass
- Designed for DHW
- Water Temp 150F and 190F possible
- Technically does NOT require double wall (CO2)
- Water Heating COP 3.2
- Temperature Maintenance Challenging
- No UL on any of these products yet (field test possible)

Outdoor Unit (Heat Pump) Model No. GS3-45HPA-US		
Performance	43-gal. system	83-gal. system
Energy Factor	3.09	3.84
First Hour Rating	71 gallons	101 gallons
Specifications		
Water Temperature Setting	130°F to 175°F	
Ambient Air Operating Temperature	-20°F to +110°F	
Heat Pump Capacity	15,400 Btu/h	
Heat Pump Capacity	4.5 kW	
Heat Pump COP	5.0	
Refrigerant Type	R744 (CO ₂)	
Compressor Type	Inverter	
Power Voltage	208/230v -1Ph - 60Hz	
Breaker Size	15 Amps	
MCA	13 Amps	
Outdoor Operating Noise Level	37 dB	
Weight	106 lbs	
Pipe Size (Tank to Heat Pump)	1/2" (Hot & Cold)	
Max Length Inc Vertical	50 ft	
Max Vertical Separation	16 ft	
Max Water Pressure	95 Psig	


Table 3. Efficiency, Output, & Input vs. Outside Temperature

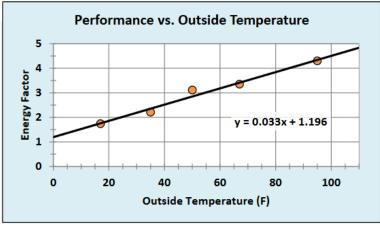

Outside Air Temperature (F)	Energy Factor (EF)	СОР	Output Capacity (kW)	Input Power (kW)
17	1.74	2.1	4.0	1.9
35	2.21	2.75	3.6	1.3
50	3.11	3.7	4.0	1.1
67	3.35	4.2	4.1	0.97
95	4.3	5.0	4.6	0.93

Table 4. Annual Performance Estimates for 10 Climates

Climate	Annual EF	Climate	Annual EF
Boise	2.9	Minneapolis	2.7
Kalispell	2.6	Raleigh	3.2
Portland	3.0	Boston	2.9
Seattle	2.9	Chicago	2.9
Spokane	2.8	Houston	3.5

COP 5.0 in literature, Actual COP is closer to 3.0

AHR Performance Ratings Issue – Lab Tests Required

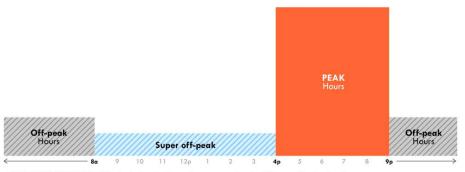
Sanden Lab Test – (Larson-Ecotope 2012)

Ecotope Central HPWH Design Portfolio

Low Rise | 10-65 dwelling units

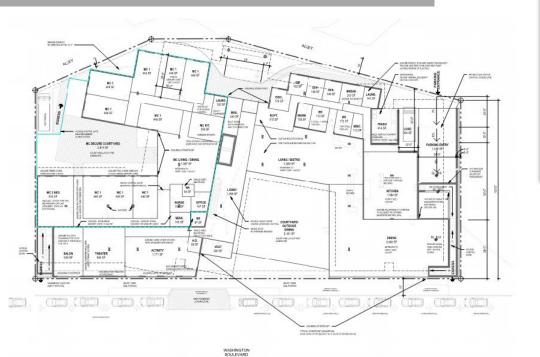
- Elizabeth James 65 units (4) Sanden CO2 Heat Pumps
- Grow Communities 3 bldgs. 12 units each Daikin Althermas
- Puyallup Tribal 20 units VRF Plant, GSHP Plant

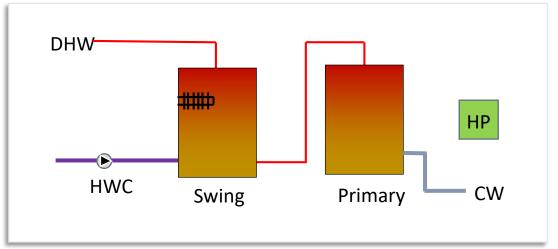
Mid Rise | 50-400 dwelling units


- Stream 134 units (2) 10T Colmac Air-Source HP in below-grade parking
- Sunset Electric 92 units Colmac in below-grade parking
- Stackhouse 120 units Colmac in underground parking deck
- Augusta Apartments 224 units Colmac in below-grade parking
- Batik Apartments 195 units Colmac in underground parking deck
- Yesler 3 227 Colmac in underground parking deck
- Jackson Apartments 526 units Colmac in underground parking deck
- Colina Apartments 131 units, Sanden Decentralized
- The Vale Apartments 134 units Versati 2, Multi-Pass
- Waterfront Place 137/135 units Versati 2, Multi-Pass
- Hopeworks 67 units , Sanden CO2 Stacks

High Rise | 200-450 dwelling units

- 4700 Brooklyn 284 units Colmac with VRF Temp Maintenance
- Cascade 430 units Colmac with VRF Temp Maintenance
- 1200 45th -245 units In Design


Smart Grid Capable Central DHW Heat Pump Product Performance Specification


- Low GWP Refrigerant Single Digits
- Single Pass Design to enable stratification
- Capable of making 150 F water.
- Operational from -13F to 110 F EAT
- Min COP Rating 3.5 at 47F AHRI
- 208VAC, 3 Phase, 240 VAC Single Phase
- 5 to 10-Ton Air Source Heat Pumps
- Potable water rated everything
- Fully packaged controls with heat pump; no on-site programming, Demand response controls
- Fully optimized defrost controls
- Digital Thermostatic Mixing Stations
- Integrated M&V, diagnotics, alerts, alarms, app.
- Sizing support from manufacturer and rep.

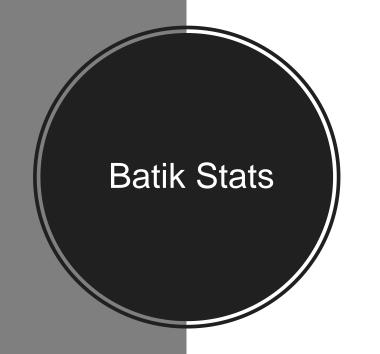
Culver City Grid Harmonize Pilot

- Demonstrate Demand Response, CO2 Central DHW
- All Heating from 8am-4pm
- High Performance Distribution System
- DHW EUI to 3 kBtu/sf/yr

2000 Gallon Primary (150F) 1000 Gallon Swing (150F) 20 Tons of Single Pass CO2 Heat Pump

- Controlled on time not aquastat
- All heating from 8 am to 4pm
- High Performance Distribution
- EUI 3 kBtu/sf/yr total load

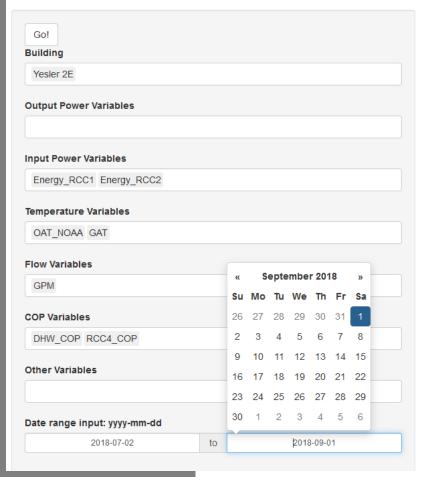
Off-peak

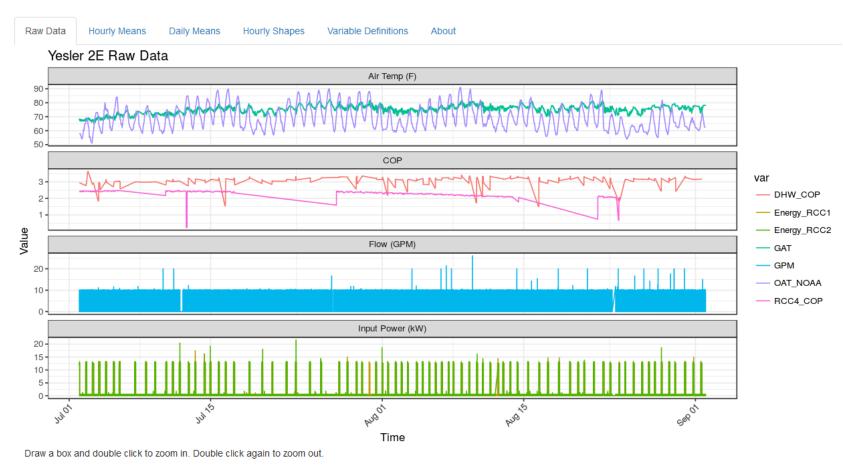

2022 RATE SCHEDULE (Illustrated rates based on approximated future rate structure)

Super off-peak

Case Study:
Batik
Apartments\
195 units

Buffered
Garage
Located Air
Source Heat
Pumps





Batik				
Apartments	195	units		
Primary Water Heating	134a Colmac air source	Single-pass		
HW temperature				
maintenance	134a Colmac air source	Multi-pass		
HW storage	3000	gallons		
HW equipment capacity	29	tons		
HWC losses per apt	68	watts/apt		
Primary system				
performance	2.7	COP		
Temperature maintenance				
performance	2.5	СОР		

Batik M&V Data

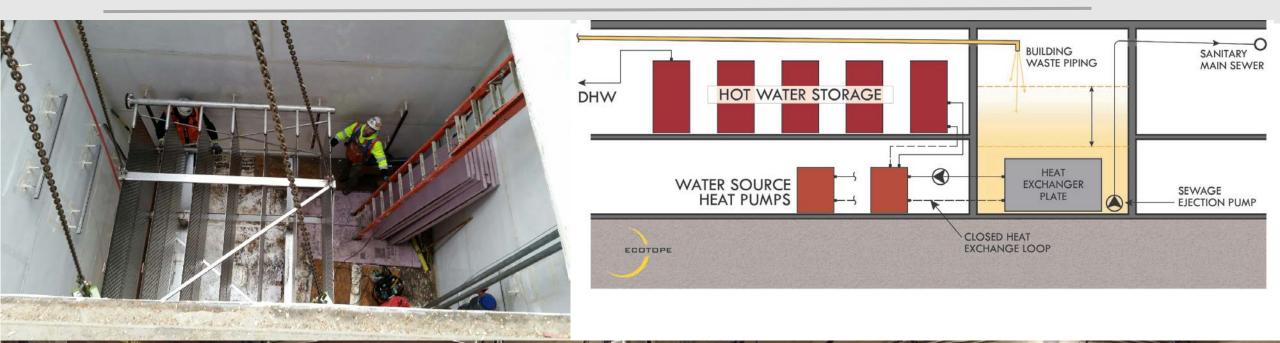

RCC Data Viewer

learned

- 1. With any large central heat pump system, full DDC control system is highly recommended.
- 2. 134a heat pumps start frosting of coils when the entering air drops below 45F. In parking garages this happens when outside air is around 25F or lower.
- 3. Keep the controls simple, KISS. We had to reprogram the heat pumps during a cold spell to optimize the backup systems. Primary RCC's had trouble melting ice.
- 4. Focus on the backup systems and the sequence for these backup systems. Big buldings cannot have any downtime on hot water systems.
- 5. Use the derated equipment capacity for design, 15 tons is really 9 tons at entering air of 50F is an example at design

Case Study – Sitka Apartments 384 unit

Wastewater
Source
Central Heat
Pump Water
Heater

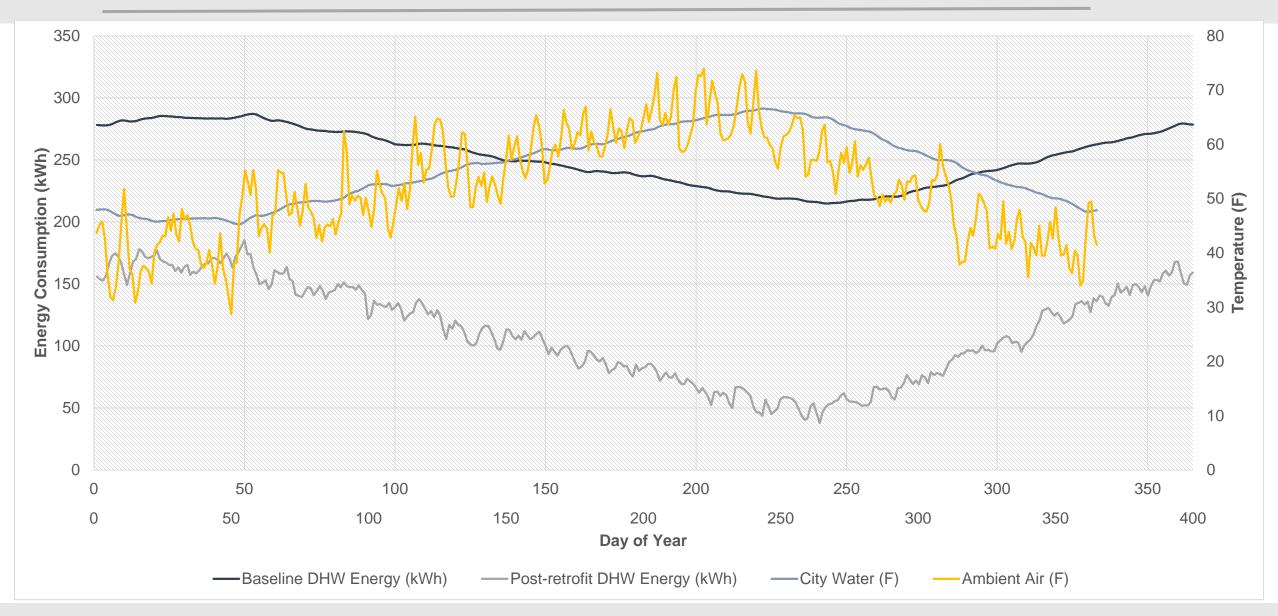


Sitka- WWHP Stats

Sitka			
Apartments	384	units	
Primary Water Heating	134a Colmac water source		
HW temperature maintenance	134a Colmac air source		
HW storage	5375	gallons	
HW equipment capacity	37	tons	
HWC losses per apt	74	watts/apt	
Primary system performance	4	СОР	
Temperature maintenance performance	2.5	COP	

| Wastewater Source Heat Pump – Seattle - 384 Units

Sitka- WWHP Lessons Learned


- 1. Get your local plumbing AHJ involved early in the design, make sure it is not a surprise.
- 2. There is not enough energy in the wastewater to heat both primary hot water and temperature maintenance. Use a separate heat pump system for temperature maintenance
- 3. Assume concrete vaults always crack, install a liner in all concrete wastewater vaults
- 4. This type of system has never been done before, the contractors have to be brought along during design, construction, plan for a lot more CA time.
- 5. With any all electric building, the grid will go down, make sure you consider power outage scenarios, we had a power outage and installed a battery backup UPS on the controls and internet modem to ensure someone is notified of any problems.
- 6 Recommend 100% redundancy and backup systems.

Case Study –
Elizabeth
James Central
Hot Water
Retrofit

60 Unit low income apartment

Elizabeth James- Monitoring – COP 2.7 Seasonal

Elizabeth James

Elizabeth James				
Apartments	60	units		
Primary Water Heating	744 Sanden air source			
HW temperature maintenance	Swing tank (backup electric)			
HW storage	520	gallons		
HW equipment capacity	5	tons		
Primary system performance	2.7	СОР		
Temperature maintenance performance	0.9	COP *Existing electric boilers		
Temperature maintenance performance	2.7	COP *Normal operating conditions		

Elizabeth James Lessons Learned

- 1. Existing buildings have real space constraints, fitting the new hot water storage tanks through the door was a real constraint, 32" tanks were the largest we could fit
- 2. Consider the downtime to install this system. Since the existing systems was a working system in a live building, we installed a bypass valve and after the system was installed and commissioned, we flipped the valve over.
- 3. First installation of the swing tank in practice, our sizing was too liberal, we should have added 50% more storage (175 gallon installed, should have been 300 gallon electric trim tank)
- 4. We had an issue with one of the four heat pumps, then we had a giant snow storm.....

Elizabeth James – Snowstorm took care of finicky heat pump.

