

Challenges in Testing and Rating Split-Unit Water Heaters

Bill Healy

National Institute of Standards and Technology Gaithersburg, MD

March 13, 2019 Presented at ACEEE Hot Water Forum

Perceived Challenges for Heat Pump Water Heaters

- What are some of the perceived drawbacks to heat pump water heaters?
 - Remove heat from the space
 - Noisy

Why not put the refrigeration system outdoors to avoid these drawbacks?

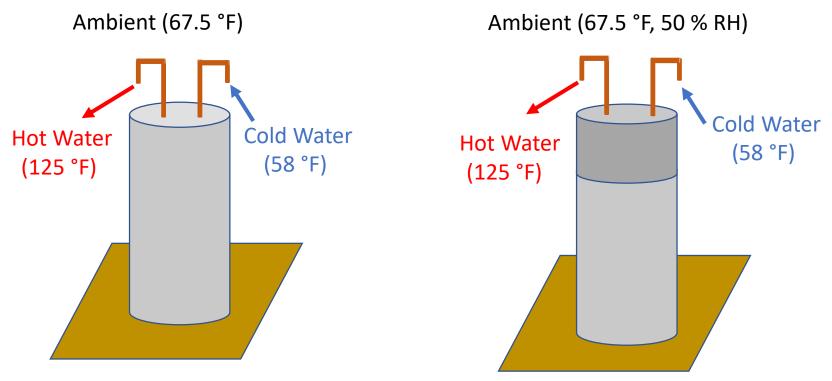
Could also ease safety concerns with alternative refrigerants

Split System Heat Pump Water Heaters

- Move the evaporator outdoors
- Storage tank is indoors
- Generally water lines between the outdoor unit and indoor unit

Image courtesy of www.r744.com

Principles of Test Methods


Purpose: Provide information to...

- Consumers to compare products
- Regulatory agencies in setting minimum efficiency standards
- Incentive providers to set levels for efficiency programs

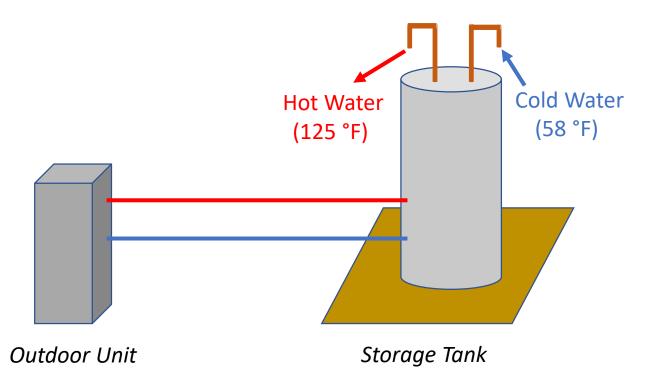
Test Methods Should Be:

- Representative
- Repeatable & Reproducible
- Not Unduly Burdensome

Testing Efficiency of Water Heaters

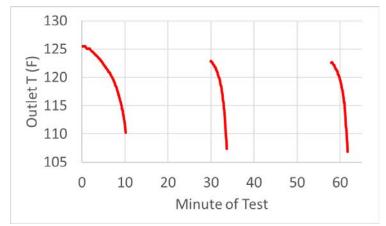
Electric Resistance or Gas Water Heater

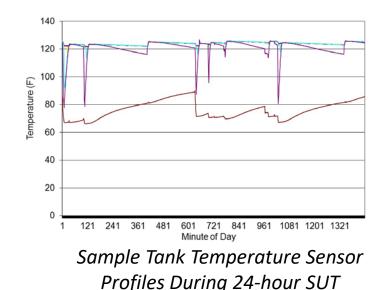
Heat Pump Water Heater


Subject to essentially the same conditions

Testing Split System Water Heaters

Current Default Approach


Ambient (67.5 °F, 50 % RH)


Current Test Method

- 12 Hour Soak-In Period (storage types)
- Delivery Capacity Test
 - First Hour Rating (storage type)
 - Maximum GPM (tankless)

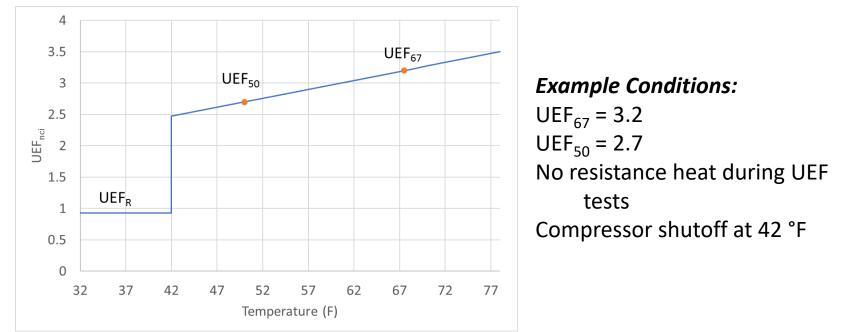
- 24-hour Simulated Use Test
 - Subject to Draw Pattern based on Delivery Capacity

Sample Outlet Temperature Profile During First Hour Rating Test

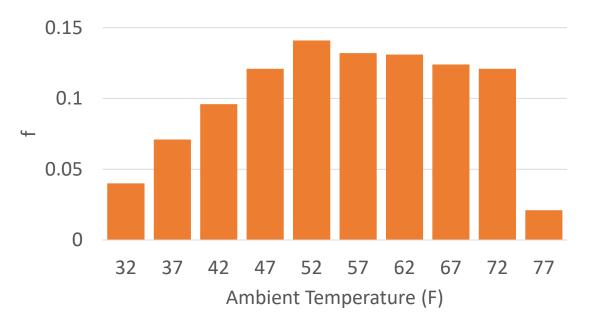
Challenges in Properly Assessing Performance of Split HPWH's

- 1. Accounting for impact of large variations in ambient conditions
- 2. Accounting for (lack of) impact on space conditioning
- 3. Accounting for defrost mechanisms

A Template: Advanced Water Heater Specification UEF


- Developed by Northwest Energy Efficiency Alliance
 - "Representative of water heater performance for equipment installed in semi-conditioned and unconditioned locations in northern climates"
 - Testing
 - FHR: tested at DOE conditions
 - UEF₆₇: tested at DOE conditions
 - UEF₅₀:
 - Ambient: 50 °F dry bulb, 43.5 °F wet bulb (50 % RH)
 - Inlet water: 50 °F
 - Compressor Cut-off temperature
 - *"Determine compressor cutoff temperature to within 5 °F"*
 - Use manufacturer's specified cut-off temperature as starting point to evaluate compressor cutoff during a recovery

AWHS UEF Calculations


- Estimate UEF_R: efficiency under resistance mode should compressor be cutoff
 - Based on results of UEF₆₇ test (i.e., UA value, draw volume)
- Estimate UEF at any outdoor temperature:

Example of a UEF map at various ambient temperatures

Bin Approach

- Develop an integrated UEF: $UEF_{NC} = \sum_{j=1}^{10} UEF_j * f_j$
- f's are the fraction of hours in the year within a 5 °F temperature bin

Space Conditioning Heat Pump Testing

- Previous analysis not meant for outdoor installations
- Compare to heat pump conditions:

AHRI STANDARD 210/240-2017

	Table	e 8. Test Cond	litions fo	r Air-cooled Pro	ducts			
Test Name	-	Outdoor Unit ² (°F)	Air Ente	ring Indoor Unit ² (°F)	Compressor Speed	³ Indoor Airflow ⁴		
		С	ooling Mo	de				
A _{Full}	95.0	/ 75.0 5,6	8	0.0 / 67.0	Full _C ¹²	Full _C ¹²		
BFull	82.0	/ 65.0 ^{5,6}	8	0.0 / 67.0	$Full_{C}$	$Full_{C}$		
BLow		/ 65.0 ^{5,6}		0.0 / 67.0	Low _C	Low _C		
Full	82.0	/ 58.0 5,6	8	0.0 / 57.0 ⁷	$Full_{C}$	$Full_{C}$		
Low		/ 58.0 5,6	8	0.0 / 57.0 ⁷	Low _C	Low _C		
DFall		58.0 5,6	8	0.0 / 57.0 ⁷	Full _C	Full _C ⁸		
DLow	82.0	Heating Mode						
lint	87.0	H0 _{Low}		62.0 / 50	5.5	70.0 / 60.0 9	Low _H	LowH
Low	67.0	HOCLow		62.0 / 50		70.0 / 60.0 9	Low _H	Low _H
Low	67.0	H1 _{Full}		47.0 / 43	3.0	70.0 / 60.0 9	Full _H	$Full_H$
Low	67.0	HlLow		47.0 / 43	3.0	70.0 / 60.0 9	Low _H	Low _H
		H1C _{Full}		47.0 / 43	3.0	70.0 / 60.0 9	Full _H	Full _H ⁸
		H1CLow		47.0 / 43	3.0	70.0 / 60.0 %	Low _H	Low _H ⁸
		H1 _{Nom}		47.0 / 43	3.0	70.0 / 60.0 9	Nom _H ¹⁵	Nom _H ¹⁰
		H2 _{Boost}		35.0 / 33	3.0	70.0 / 60.0 9	Boost _H	Full _H
		H2 _{Full}		35.0 / 33	3.0	70.0 / 60.0 %	Full _H	Full _H
		H2Low		35.0 / 33	3.0	70.0 / 60.0 9	Low _H	Low _H
		H2 _{Int}		35.0 / 33	3.0	70.0 / 60.0 9	Int _H	Int _H
		H3 _{Full}		17.0 / 15	5.0	70.0 / 60.0 9	Full _H	$Full_H$
		H3 _{Low}		17.0 / 15	5.0	70.0 / 60.0 9	Low _H	Low _H
		H3 _{Boost}		17.0 / 15	5.0	70.0 / 60.0 9	Boost _H	$Full_H$
		H3C _{Boost}		17.0 / 15	5.0	70.0 / 60.0 9	Boost _H	Full _H
		H4 _{Boost}		5.0 / 3.0	11	70.0 / 60.0 %	Boost _H	$Full_H$

Heat Pump Test Conditions

Required Test Settings – Single Stage System

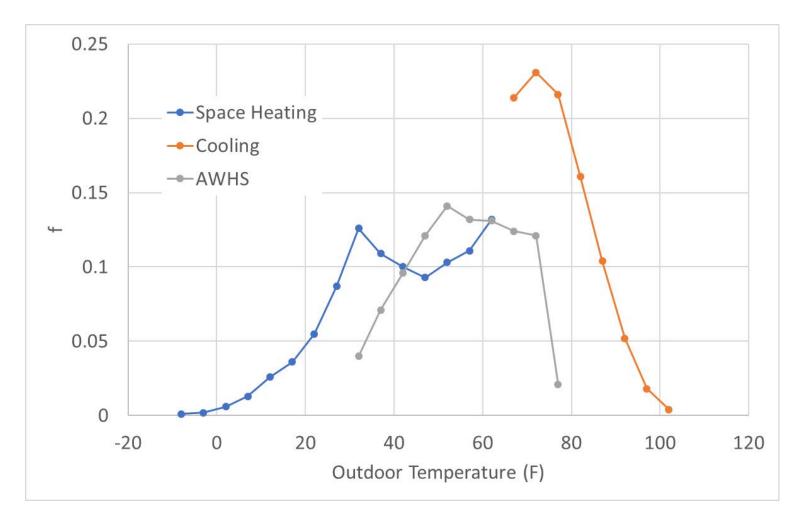
Cooling Mode		
Wet Bulb Temperature		
75 °F		
65 °F		

Heating N	/lode
-----------	-------

Dry Bulb Temperature	Wet Bulb Temperature
47 °F	43 °F
35 °F	33 °F
17 °F	15 °F

• Additional Required Settings – Variable Stage System

Cooling Mode


Dry Bulb Temperature	Wet Bulb Temperature
87 °F	69 °F
67 °F	53.5 °F

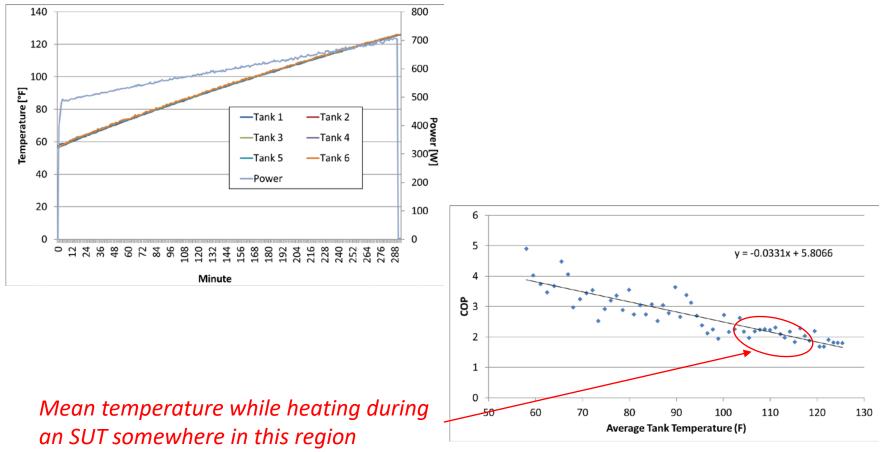
Heating Mode

	Wet Bulb Temperature
62 °F	56.5

Note: Some single stage conditions must be repeated at different compressor speeds

Bin Method for Space Conditioning

Bin levels for AWHS and Space Conditioning


Split System Testing Options

- Goal: "Thorough enough" information with minimal testing
 Options
- Apply a bin approach with new bins?
 - Are two UEF tests enough?
 - How linear is dependence?
 - More extreme conditions than used for AWHS?
 - More variation in RH?
 - Are there different bins for different regions?
- COP testing?
 - Instead of running multiple 24 hour SUT's...
 - Run 1 SUT
 - Run multiple shorter tests to determine the COP of unit at different conditions and computationally determine UEF at alternative conditions.

COP Testing

• An example with a 50 gallon HPWH

Test Burdens

Estimated Time to Run a Test (Very Rough!)

Activity	Time
Check in and Setup	1 day
Soak in period	12 h
First Hour Rating and Recovery	3 h
Wait time prior to SUT	1 h
SUT	24 h
TOTAL	~3 days

Additional Outdoor conditions

- Add in time to reach equilibrium in environmental chamber Some chambers may not be capable to going to sub-freezing temperatures

Discussion