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Outline

• Experimental setup 
• tank geometry, TC locations
• P&ID and Instrumentation specifications
• Initial conditions
• Draw profiles (gal, GPM)

• Experimental results
– Show experimental data graphs and animations
– Comparisons between dip-tube types in data

• Model approaches (1D-2D-3D)
– Introduce eddy diffusivity 
– Table of eddy diffusivity observed for dip-tube type 1

• Conclusions
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Experimental 
Setup
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Hypothesis: A flow property developed by each diffuser type (characterized by Richardson 
and Reynolds number), is distinct and interaction will walls (installation height) will also affect 
this flow property.



55

Instrumentation specifications and uncertainty

Equipment Specification
RHEEM® 50 gallon 
residential tank

UEF 0.93
FHR 63 gallons*
Volume 45.2 gallons

National 
Instruments 
logging chassis

cDAQ-9178

Inline resistance 
heater

3 kW

24 Volt variable 
power supply

0.01 volt resolution

Iwaki pump 1/20th hp direct 
drive

VCTL 27 kW

Instruments Specification Uncertainty
NI-9214 module

Type T, 1/16” 
diameter, 
ungrounded 
thermocouples

+- 78 mV, 68 S/s

0.55 s thermal 
constant 
0.5 °C for probe

1.2 degF

AliCat® Liquid 
Flow Controller

0 to 1.7 GPM +- 0.007 GPM @ 
0.18 GPM

Flow meter 0 to 3.5 GPM +- 2%

Bucket & stop 
watch

1 liter gradation +- 2%**

Rotameter 0 to 3 GPM +- 10%**

* Not using electric heater for recovery
**Only used to estimate set point or verify flow

Propagated 
Error

3% by RSS 
method
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Heating initial conditions

Typical Initial Condition Summer Typical Initial Condition Winter
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Draw initial conditions, constant temperature

Typical Initial Condition Summer
0.2 GPM

Typical Initial Condition Winter
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Heating data

Typical Graph
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Draw Rates

1.5 to 1.9 GPM Continuous Draw

0

5

10

15

20

25

30

35

40

60

70

80

90

100

110

120

130

140

185 190 195 200 205 210 215

C
um

ul
a

tiv
e 

D
ra

w
 @

 7
2 

D
eg

F
(G

a
llo

ns
)

Te
m

pe
ra

tu
re

 (D
eg

F)

Time (min)

1.7 GPM Continuous Draw



10

Dip-tube draw comparisons (1.6 +- .2 gpm for 50 gallons)
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Modeling

Models (1D)
• Mixed tank

• Plug flow

• Combination of plug flow and mixing

• Convection (plug flow) and diffusion 

• Convection (plug flow), diffusion and 
eddy diffusion

3D simulation

Computation Time
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Simulations
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Simulations
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Modeling

Models (1D)
• Convection (plug flow), diffusion with 

eddy diffusion

Eddy Diffusivity

𝑣𝑣
𝜕𝜕𝑇𝑇
𝜕𝜕𝑦𝑦 = (𝛼𝛼 + ε)

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑦𝑦2

𝑎𝑎 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅

𝑏𝑏
= 𝛼𝛼 + ε /𝛼𝛼

Correlation to Re/Ri 
(Oppel & Zurigrat late 1980’s)
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Initial Results

Typical Inlet Fitting Factor Fitting Results
Dip-tube Installation 
Height

a uncertainty 
in a

b uncertainty 
in b

Maximum
Factor 

32” 38,300 600 0.326 .0012 2,500,000
40” 12,800 130 0.33384 0.00009 800,000

40”* 10,960 70 0.3367 0.0006 800,000
53” 3250 70 0.329 0.002 100,000

*lower Ri initial 
condition
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Conclusions

• Experiments < 3% errors
• 16 TC grid improves resolution
• Simple plug flow models total energy well outside of 

thermocline
• Empirical methods to modify simple plug 1D plug flow
• A first principal model may be viable by sampling at maximum 

local Richardson number
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Your Questions Please
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