

Massimo Marciani

2018 International Symposium on Energy Efficiency

June 26th, 2018

MAKING THE CASE FOR SUSTAINABLE MOBILITY IN ITALY AND EUROPE

SOLUTIONS FOR MOBILITY

City logistics, conurbations and National policies

- Case study: the City of Turin
- Objectives and adopted methodology
- Urban Freight Transport (UFT) in Turin
- Collaborative logistics as enabler for sustainability
- 🔶 Turin pilot outcomes
- Conclusions & Recommendations

What they have in common?

FIT CONSULTING SRL

Logistics in Rome 31 a.c.

FIT CONSULTING SRL

Urban Logistics in Rome 2017 b.c.

COORDINATED DELIVERIES

RESERVED PARKING LOT

DOOR-TO-DOOR DELIVERIES

OFF STREET PARKING

TRANSHIPMENT FACILITIES

We have a problem not only in Rome!

FIT CONSULTING SRL

contributes to urban challenges (20% of traffic, 40-50% of GHG)

embeds conflicts (space/time, econ./environm., stakeholder views)

highly context-specific & dynamic (urbanisation, e-commerce)

still heavily neglected in city/transport planning (restrict vs assist)

UFT context

City of Turin

The Municipality of Turin has a population of 902,137. Population density \approx 6,950 inhabitant /Km2

The motorization rate is approximately about 63% and overall trips on a working day are about 3,43 millions.

Trips per day per person are 2,44 (1,75 motorized).

Turin adopted a SUMP since 2008.

Turin is leading city in Italy in urban logistics having developed a set of push and pull measures dealing with restrictions and incentives for logistics operators delivering their operations in accordance with the Freight Quality Partnership (FQP) Agreement signed in 2013.

City of Turin

Analysis of the existing situation of urban freight transport in pilot area (Identification of existing criticalities)

AREA TARGET → Central ZLT: 2,58 km² (infrastructured with 37 accesses monitored by cameras)

2,400 shops, restaurants, bars 6 pedestrian streets 4 reserved bus lanes

f

FIT CONSULTING SRL

The Pilot Project in Turin

Laboratory Target Area in a Nutshell

Demands of goods	Tons/day	%
Fresh food	30.3	8.3
Dry food	28.0	7.7
Groupage	100.9	27.8
Fashion goods	60.7	16.7
Hotel restaurant catering	143.3	39.5
TOTAL	363.2	100.0

Category	Entrance in ZLT	Share
EURO 0	34	0,33%
EURO 1	91	0,88%
EURO 2	806	7,76%
EURO 3	2.698	25,97%
EURO 4	5.070	48,81%
EURO 5	1.687	16,24%
EURO 6	1	0,01%
Totale	10.387	100.00%

Vehicles entering in LTZ	%
Cars	88,7
LCVs	7,4
Buses	2,0
Motocycles	1,9

Urban Mobility and Logistics Professionals

The innovative access model

Logistics operators involved in the project receive a special permission that allow to:

- Access LTZs from 6.00 to 24.00
- Use dedicated bus lanes
- Use loading/unloading within pedestrian zones

areas

CORRIERE ESPRE

Minimum requirements to join the recognition scheme are:

- Low Emission Vehicles compliant to Euro 5 standards or higher, with a gross vehicle weight below 3,5 tons (raised to 7 tons for ZEVs)
- Embedded electronic devices able to detect and transmit data regarding the location of the vehicle (i.e. GPS)

The pilot

FIT CONSULTING SRL

The methodological approach

Impact assessment indicators

Impact area	Criterion	Composite Indicator	Indicator
			CO concentration
			SO _x concentration
	Air quality		NO _x concentration
ent	Air quality		VOC concentration
E			NH ₃ concentration
Environment			PM ₁₀ concentration
<u> </u>			CO ₂
_	GHG emissions	GHGs	CH ₄
			N ₂ O
	Noise pollution		Noise
	Level of service		Punctuality
			Quantity
		Reliability	Quality
			Market response
Ę			Customer satisfaction
<u>ili</u>			Supply chain visibility
20	Safety and security		Accidents
చ		Safety	Fatalities
t		Salety	Injuries
spe			Damages
Transport & Mobility		Congestion	Delays
	Transport system	Space exploitation	Violations
			Traffic throughput
	UFT vehicles		Load factor
			Vehicle utilisation factor

The expected impacts of Turin UFT are:

- Traffic reduction
- Vehicle utilisation factor reduction
- CO₂ emissions reduction
- Accidents reduction
- Energy consumption reduction

Impact assessment KPIs

Module	Impact Areas	Wish list of indicators	
Impact assessment	Mobility	Customer satisfaction; Traffic throughput; Vehicle utilisation factor;	
	Environment	CO2 emissions	
	Safety	Accidents; Violations	

Data collected for KPIs

Module	Impact Area	КРІ	Data collected	Comments		
Seamless urban freight distribution in Turin						
Impact Assessment	Mobility	KPI 51 (Customer satisfaction)	Rate (Likert scale 1-5)	"Before" data no available		
		KPI 61 (Traffic throughput)	 Number of shipments Average distance of a drive 	Average distance of a run was based on estimations		
		KPI 63 (Vehicle utilisation factor)	 Number of load/unload stops Average time of drive 	The number of load/unload stops was based on estimations.		
	Environment	Per type of vehicle:• distances traveled• fuel typeKPI 43 (Total CO2emissions)produced				
	Safety	KPI 53 (Accidents) KPI 60 (Violations)	 Number of accidents Total veh-km Number vehicles performing illegal movements (e.g. illegal parking and / or access in LTZs) Total number of movements 	Data available from questionnaire survey to express couriers		

Methods applied and KPIs

	Impact Area		IA Method applied	КРІ	KPI values		
Module		КРІ		data/un its	(Before /	After)	Impact
Impact Assessment	Mobility	KPI 51 (Customer satisfaction)	Questionnaire survey	Likert scale	2	4	Positive
		KPI 61 (Traffic throughput)	Average distance run x number of vehicle trips per day	Veh- km/day	107,8	98,2	Positive
		KPI 63 (Vehicle utilisation factor)	Number of load/unload stops per day x average time of drive	%	65,3	49	Positive
	Environment	KPI 43 (Total CO2 emissions)	CO2 emissions evaluated with mathematic formulas considering type of vehicle, distances, fuel type, average emission produced	kg	27,420	24,930	Positive
	Safety	KPI 53 (Accidents)	Questionnaire survey	Number / veh- km	4	0,5	Positive
		KPI 60 (Violations)	Questionnaire survey	%	10	0	Positive

The results achieved by this pilot case are very positive since all of the impact area's objectives were fully reached and most of them manage to overcome the initial targets.

The innovative aspect of this project is to plan transport with a holistic view: shared lanes for both passengers and freights.

Reserved loading/unloading parking facilitated couriers in deliveries. This system was managed by access control with already installed cameras that was further enhanced for the monitoring parking booking.

ITS helped couriers in deliveries by improving efficiency.

Operators agree to improve their freight vehicles quality in favor of new and more eco-friendly ones in change of more flexibility in the use of bus lanes and access into the LTZ. T

The implemented measures allow environmental improvements: reduction of CO_2 , pollutant emissions and traffic (no queue at the LTZ gates to wait for the entry time window, freight vehicles allowed to use bus lanes without reduce the bus commercial speed).

These measures fostered a more sustainable business model.

Comparison with the initial Objectives & Data Gaps

Mobility focuses

The traffic throughput witnessed a 9% decrease, vehicle utilisation also decreased about 25%, thus significantly overcoming the initial target (8%).

This aspect can be explained as an effect of the shared lanes used by both public transport and couriers by improving the efficiency of the whole transport system.

Finally, the customer satisfaction after the pilot reached a very satisfying score (4 in a scale from 1 to 5). Since no "before" data were available, though, comparison is not possible. Despite this, the shared lanes usage, loading/unloading parking, and flexible access into LTZ and on board unit installation seems to be widely appreciated among logistic operators.

Comparison with the initial Objectives & Data Gaps

Environmental focuses

Carbon dioxide witnessed an important decrease around 9%, however not reaching the initial target of 20%. This could be explained under the hypothesis that freight vehicles represent a small percentage of the total circulating vehicles.

Nonetheless, both the Municipality and stakeholders have appreciated the positive impact of the pilot case, since this indicates that significant environmental benefits can be highly achieved under holistic approaches, similar to the one implemented in this pilot.

Comparison with the initial Objectives & Data Gaps

Safety focuses

Significant positive impacts in terms of accidents and violations are also justified. The number of accidents during this pilot decreased by approximately 88% (significantly overcoming the initial target of 2% reduction). Furthermore, no violation was present after the pilot project.

The "before" situation of violations occurred probably due to the fact that freight vehicles were circulating in reserved lanes (shared with the public transport).

The zero value in the "after" situation can be probably explained due to the OBU installation, which provided warnings if the vehicle moves illegally or indicates available loading/unloading parking, thus avoiding illegal stops.

Conclusions

In order to summarise the main outcomes, it can be evidenced the following:

The impacts of freight movement to/within cities suggest that city logistics should be a key priority for their evolving transportation networks.

Logistics needs and requirements are rather different from town to town due to specific local characteristics, including the size of the city, the dimension and structure of the city centre, the existence of specific facilities, the urban road network, as well as the shops and products.

It is not possible to identify a "one for all" solution, but it is essential to define several options based on the specific features of the town, as well as characteristics and needs identified.

There is a growing consensus on the idea that more sustainable urban freight operations and significant benefits in terms of energy efficiency can be achieved by an appropriate mix of different measures.

Organise meetings to define regulations together with stakeholders through a cooperative process to ensure acceptance among carriers and other stakeholders

#ISEE18

Massimo Marciani

in

Mobile: +39 348 6439486 Email: marciani@fitconsulting.it

@MMarciani

https://it.linkedin.com/in/massimomarciani

