Identifying Priority Households for PAYS[®] Energy Efficiency Investments in East Tennessee

Rory McIlmoil ACEEE Rural Energy Conference October 22, 2018

Service Area of Appalachian Electric Cooperative

Service Area of Appalachian Electric Cooperative

Census-level Energy Cost Burdens for AEC's LMI Households

Energy burden in AEC counties (2016)

< 50% FPL	# Homes	Energy Burden	Unaffordable cost per home
Jefferson	1,412	29.3%	\$1,720
Hamblen	2,054	26.8%	\$1,519
Grainger	621	32.0%	\$1,893
Tennessee	191,505	27.4%	\$1,559
125 - 149% FPL	# Homes	Energy Burden	Unaffordable cost per home
Jefferson	1,205	8.5%	\$642
Hamblen	1,793	7.8%	\$451
Grainger	757	9.3%	\$830
Tennessee	135,317	8.1%	\$516

Note: "Energy burden" is defined as the percent of gross household income that is spent on home energy costs. Only direct home energy costs are included, not transportation costs. According to Fisher, Sheehan and Colton, affordable energy costs are those that amount to 6% or less of gross household income. Anything over 6% is deemed unaffordable. Source: Fisher, Sheehan & Colton. Home Energy Affordability Gap, 2016. http://www.homeenergyaffordabilitygap.com/

Analyzing and Mapping Energy Use and Intensity

Purpose and guidance

- To identify the top 1,000 candidates for cost-effective energy efficiency improvements, with the greatest savings potential
- Pilot program requirements
- Key home efficiency measure used: Energy Intensity (EI)

Energy Intensity Range (kWh/SF)	Efficiency Category	
< 0.5	High efficiency	
0.51 - 1.00	Efficient	
1.01 - 1.25	Average	
1.25 - 1.50	Inefficient	
1.51+	Very inefficient	

Process, Part 1

Appalachian Electric:

- 1. Provided 3-year monthly meter data for ~44,500 accounts
- 2. Provided county property tax data for 3 main counties (96% of all AEC accounts)

Appalachian Voices:

- 1. Combined property tax data w/ AEC account data
- 2. Calculated three-year average monthly kWh for each meter
- Combined SF (from property data) w/ monthly kWh to generate EI measure – average and seasonal EI's
- 4. Calculated difference in average kWh and ratio of El's between Winter and Shoulder months (heat loss)

Process, Part 2

Account removal: Per property data

- 1. Non-residential
- 2. All rentals, multi-unit buildings (apartments, condos, etc)
- 3. Existence of non-electric heating source
- 4. Greater than 3,000 SF
- 5. Assessed at more than \$250,000

Account removal: Per meter data and analysis

- 1. Properties using less than 1,000 kWh/month
- 2. Seasonal properties (0 kWh average for any "season")
- 3. Homes with EI less than 1.5 kWh/SF (break-even for worst EE)
- 4. Missing/suspect data
- 5. Used Winter/Shoulder ratios, difference in kWh to sort for most inefficient homes and select final 1,000 properties

Challenges/Lessons learned

- No common ID (like a social number) between both data sets
- Less familiarity with the more complex property data set
- Non-electric fuel designations -- many had high kWh/month
- Rental properties: Many show same SF for multiple accounts (tied to same property tax shapefile), even though accounts have different kWh -- can't calculate energy intensity
- Multiple property designations, some with multiple codes
- You never really know until you see and assess the property
- Broader issue: inconsistent property tax data sets

Results

Final candidate list (1,000)

- County breakdown of final candidate list:
 - Jefferson: 443 (44.3%)
 - Hamblen: 263 (26.3%)
 - Grainger: 294 (29.4%)
- Average monthly kWh (2014 2016): 2,171
 - Average kWh, Winter months: 3,003

1.9 kWh/SF

2.7 kWh/SF

- Average monthly EI (2014 2016):
 - Average El, Winter months:
- Homes > 24,000 kWh/year: 589
 - This is the kWh threshold used for AEC's Meister analysis

The worst of the worst

Seasonal Energy Intensity of Candidate Homes

Maps

Average Monthly kWh for AEC Residential Properties (2014-2016)

Annual Energy Intensity of PAYS-Candidate Homes

Prioritizing homes to target

The strongest PAYS candidates in order of potential usefulness:

- 1. Ratio of winter to shoulder energy intensities
- 2. Higher winter energy intensities
- 3. Higher winter kWh per month
- 4. Higher annual energy intensities
- 5. Higher annual average for kWh per month

Beyond Energy Intensity

- Utilities can use GreenButton to track/assess electricity use
 - Can see hourly, baseline and seasonal usage

EFFICIENCY AND SAVINGS POTENTIAL

Impacts for AEC's program

Assumptions

- 600-700 homes over 2 years
- ~\$8,000 per home (\$5 million total)
- Avg. initial kWh/year = 24,000
- 25% electricity savings per project

Results

- 3,900 MWh/year energy savings
- Net savings for participants: \$120/year
 - \$600/year after cost recovery
- 10-15 direct jobs (30-40 indirect jobs)

Tennessee EE Potential

Cost-effective package savings potential in Tennessee single-family homes

dollars per year utility bill savings

b 17.3 trillion

Ś

Btu per year gas, propane, and fuel oil savings

8.8 billion

1.1

billion

kWh per year electricity savings

1.5 million

cars of pollution reduction

NREL Restock Analysis – State Fact Sheets

Rory McIlmoil, Energy Savings Program Manager Appalachian Voices www.AppVoices.org

(828) 278-4558 <u>Rory@AppVoices.org</u>