

DANISH TECHNOLOGICAL INSTITUTE

Decarbonizing Industrial Process Heating

Benjamin Zühlsdorf, DTI June 24th 2024

MONDAY, JUNE 24

TIME	ACTIVITY	LOCATION		
08.00 – 08.15	Transport to Danish Technological Institute			
08.15 – 09.45	 Welcome and Introduction Round of introduction Week program DEA presentation of Danish industrial decarbonization 	Kongsvang Alle 29, Aarhus C		
09.45 – 12.30	Presentations and tour at Danish Technological Institute	Kongsvang Alle 29, Aarhus C		
12.30 – 13.00	Lunch and Q&A	Kongsvang Alle 29, Aarhus C		
13.00 – 13.30	Transport to Johnson Controls Denmark			
14.00 – 16.30	Visit at Johnson Controls Denmark	Christian X's Vej 201, Højbjerg		

Agenda

- 09:45 10:00 Intro TI program Benjamin Zühlsdorf
- 10:00 10:30 Industrial Heat Pumps Status and perspectives Benjamin Zühlsdorf
- 10:30 11:00 Electrification and batteries Developments, trends and case Anders Solberg Jensen
- 11:00 12:15 Lab tour and debate We will split into two teams
- 12:15 Lunch
- 13:00 End of visit

Creating value since 1906

Danish Technological Institute was founded in 1906 by the visionary engineer, Gunnar Gregersen.

That makes us one of the oldest institutes of our kind.

We are approved as an RTO by the Danish Minister of Higher Education and Science.

We offer three types of services

Validation

We validate and document technological solutions through tests and trials in our state-of-the art technology infrastructures.

Development

We run extensive research projects and develop pioneering technological solutions.

Integration

We integrate and implement technological solutions aligned with market, organisation, environment and culture.

Divisions

Food & Production

Building & Construction

Materials

Environmental Technology

Energy & Climate

Board of representatives

Board of Trustees

DANISH TECHNOLOGICAL INSTITUTE President and CEO Juan Farré						
FOOD & PRODUCTION		BUILDING & CONSTRUCTION	MATERIALS	ENERGY & CLIMATE	ENVIRONMENTAL TECHNOLOGY	SUBSIDIARIES
Executive VP Anne-Lise H. Lejre		Executive VP Mette Glavind	Executive VP Mikkel Agerbæk	Executive VP David Tveit	Executive VP Sune D. Nygaard	
Bioresources Agriculture and Digitalization Food Safety and Quality Food Technology	Innovation and Digital Transformation Process Design and Operations Robot Technology Sustainability and Digitalization Training	Concrete Masonry Pipe Centre Quality in Construction Sustainable Construction Ideation and development Wood and Biomaterials	Big Science Industrial 3D-print Industrial Materials Technology Nano Production and Micro Analysis Plastics and Packaging Technology Tribology	Automobile Technology Energy Efficiency and Ventilation Installation and Calibration Metrology and Quality Assurance Refrigeration and Heat Pump Technology Renewable Energy Systems	Air and Sensor Technology Laboratory for Chemistry and Microbiology Policy and Business Development Product and Materials Chemistry Water Technology	Danfysik A/S Dancert A/S Danish Technological Institute Spain, S.L Teknologisk Innovation /

STAFF

Refrigeration & Heat Pump Technologies

Validation

Accredited testing of heat pumps

From kW to MW

Integration

Process integration & decarbonization strategies

On-site testing

Courses for industry

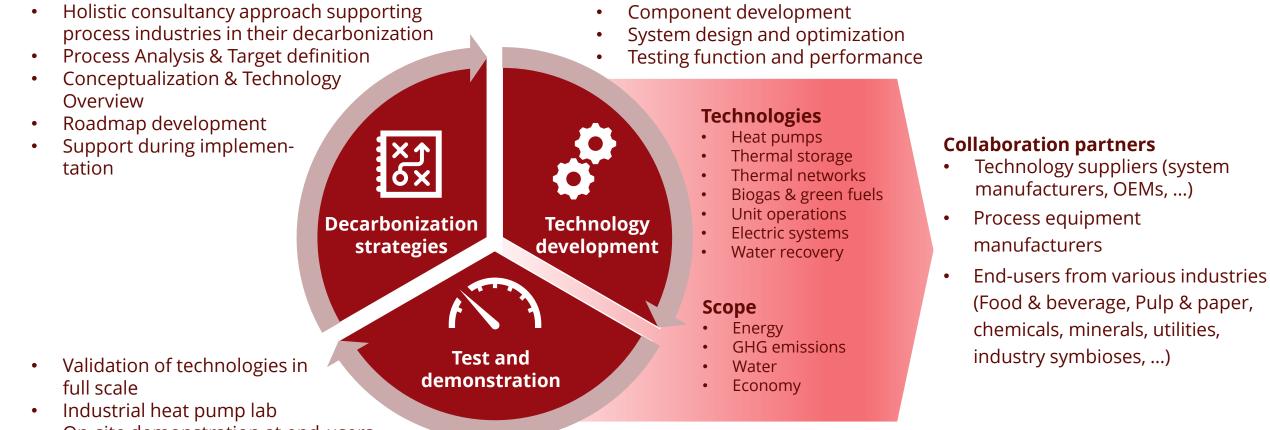
Development

- Technology development of components and systems
- Experimental testing
- Modelling and Simulation

Domestic HPs

Supermarket Systems

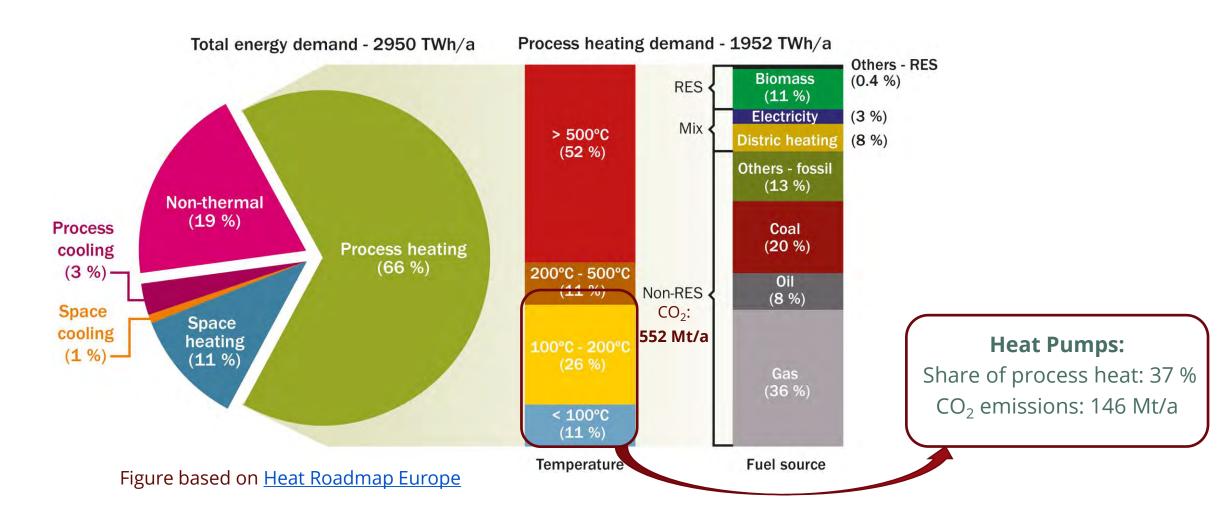
District Heating



Unit Operations

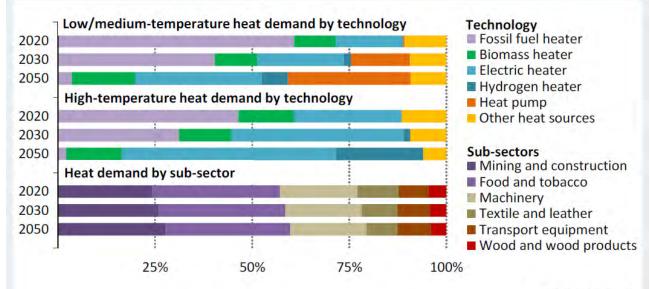
High-Temperature HPs

Decarbonization of Industries


On-site demonstration at end-users

Decarbonization of Industrial Process Heating

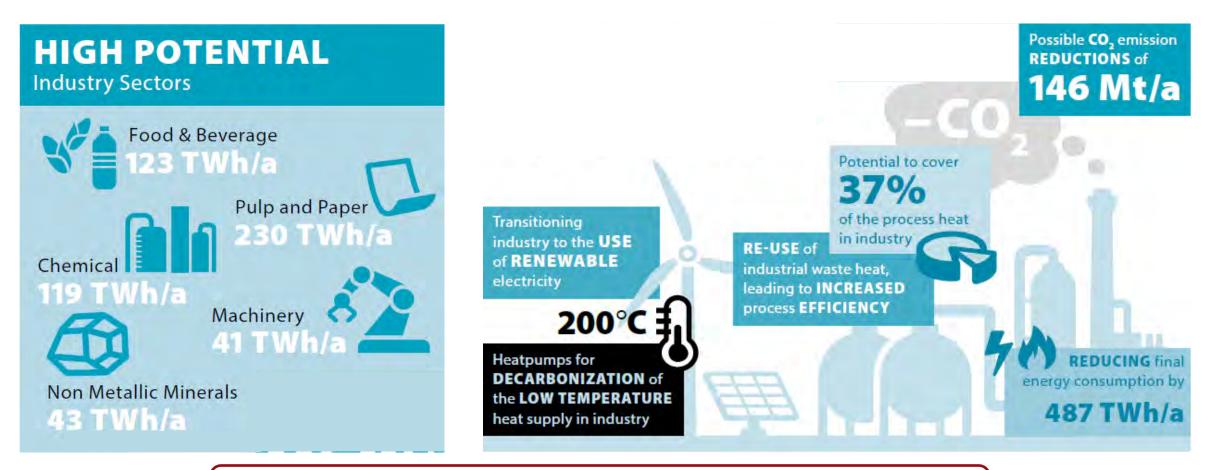
The bigger picture



Process Heating in EU 28

Electrification and energy efficiency are key for reaching sustainability targets

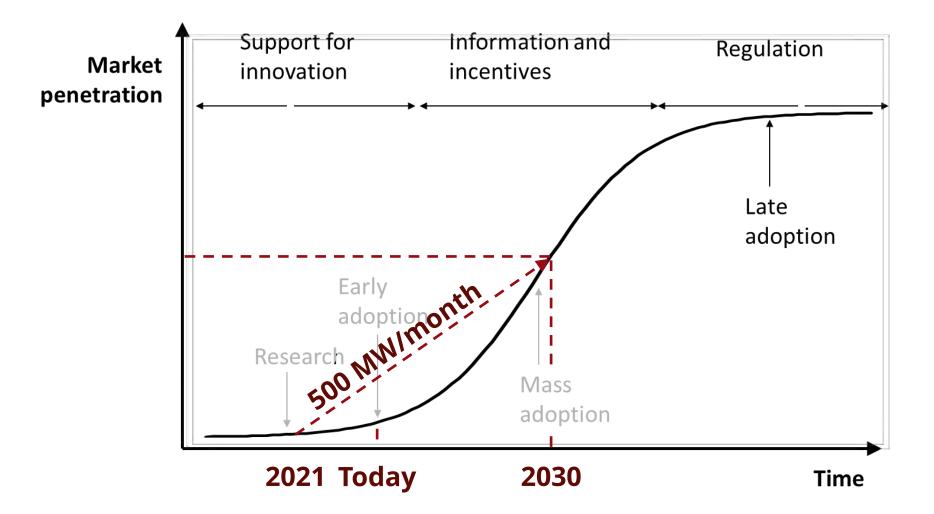
Figure 3.20 > Share of heating technology by temperature level in light industries in the NZE


IEA. All rights reserved.

The share of electricity in satisfying heat demand for light industries rises from less than 20% today to around 40% in 2030 and about 65% in 2050

Source: "Net Zero by 2050 – A Roadmap for the Global Energy Sector, International Energy Agency, 05/2021, <u>https://www.iea.org/reports/net-zero-by-2050</u>

- IEA estimates that natural gas will be steadily phased out by heat pumps and electric heaters, especially for temperatures up to 200 °C to 250 °C
- Developed countries must go first and be front runners
- The Danish industry should reduce emissions by 1.9 mio. tons of CO2 per year. 25 % are to be obtained by "Electrification and heat pumps", mainly implemented between 2025 to 2030 (Klimarådet)
- EU discusses an end of fossil fuel use for processes <200 °C by 2027 in the <u>RED III, art. 21</u>


Application Potential for HTHPs

<u>White Paper: Strengthening Industrial Heat</u> <u>Pump Innovation – Decarbonizing Industrial Heat</u>

& <u>Webinar</u>

From Early Adoption to Mass Adoption

The Road Towards Implementation

Technology Awareness

- Commitment to sustainability and decarbonization
- Potentials, limitations and characteristics of the technology
- How to exploit the potentials?
- Variety of stakeholders involved

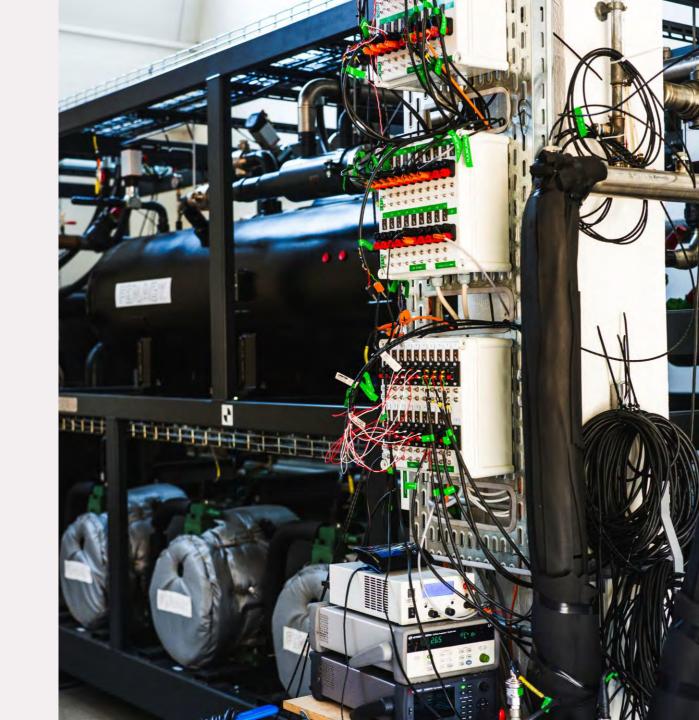
- Component and system development
 Testing and demonstration
 - Variety of technologies
 - Collaborative effort

End-user adoption

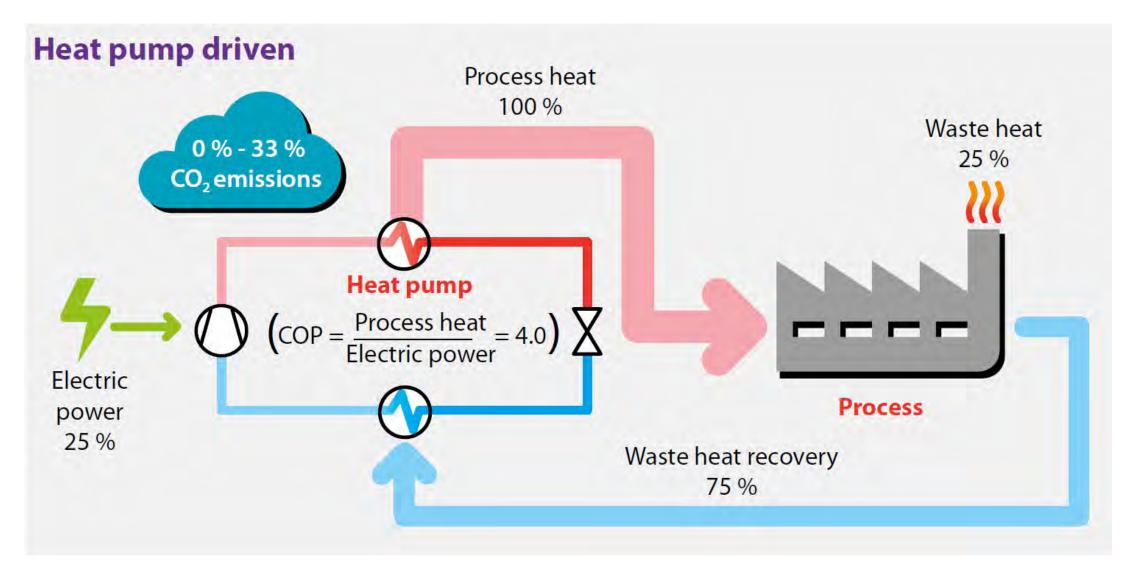
- Technology adoption life cycle
- Retrofitting of industries for
- HP-based heat supply
- Decarbonization strategies

Boundary conditions

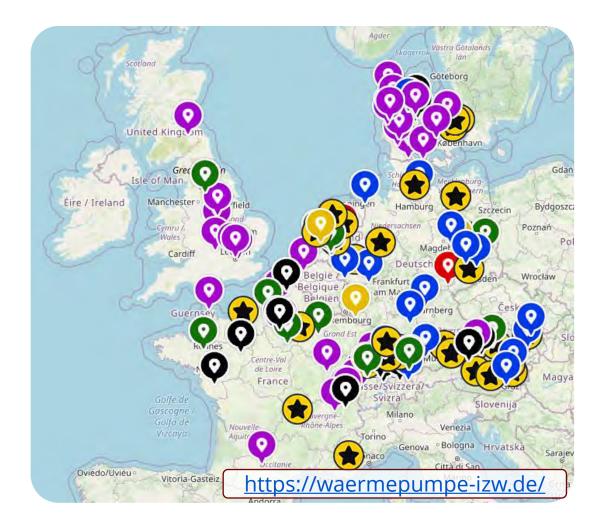
- Cost for fuels and GHG
 - Regulatory frameworks
 - Subsidies & incentives
 - Market developments


Market deployment

- Technology implementation within commercial projects
- Learning curve for operators and suppliers
- Supply chain covering considerable volumes
- Business models

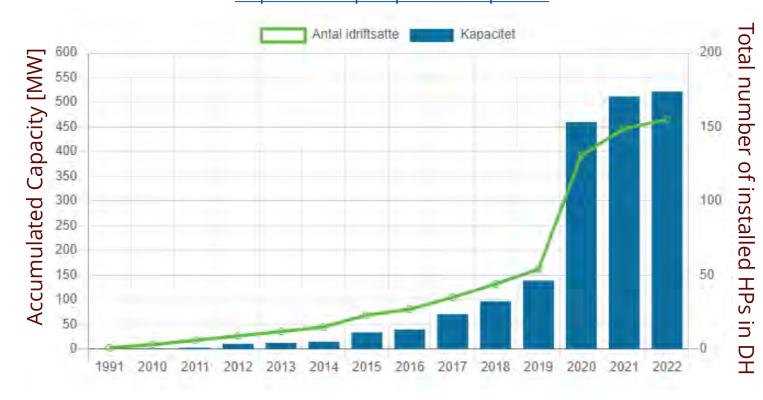


Technologies


Ongoing developments and perspectives

Industrial HPs – Working Principle

Proven Principles

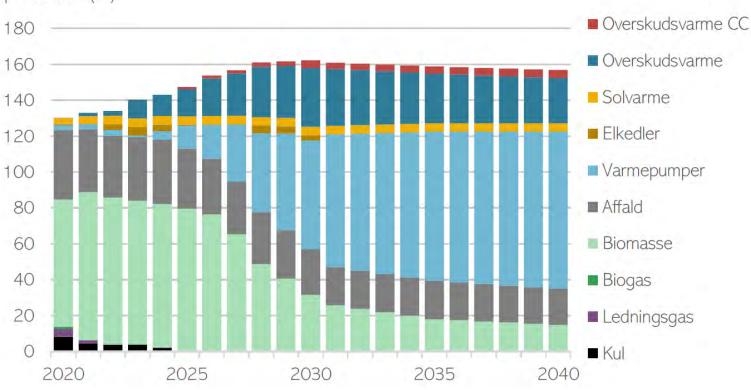

• > 300 cases in IEA HPT Annex 48

• Proven technology < 100 °C

• Proven principles > 100 °C

HPs in District Heating in DK

Installed HPs in District Heating in DK https://varmepumpedata.dk/plants/



- Heat pumps are a preferred solution
- Technology is understood by all involved parties
- Solutions are becoming standardized
- Natural refrigerants are dominating (Ammonia | CO₂ | Hydrocarbons)

HPs in District Heating in DK

Expected development of heat supply to district heating until 2040 in Denmark

Fjernvarmeproduktion (PJ)

- Heat pumps are a preferred solution
- Technology is understood by all involved parties
- Solutions are becoming standardized
- Natural refrigerants are dominating (Ammonia | CO₂ | Hydrocarbons)
- Phase out of biomass still to come
- HPs to become main heat source for district heating

Large-scale HPs for DH – selected examples

50 MW (2 x ~25 MW) | CO₂ | Startup: 2024 | Esbjerg (DK) | MAN Energy Solutions [1]

132 MW (3 x ~44 MW) | CO₂ | Startup: 2027 | Aalborg (DK) | MAN Energy Solutions [2]

50 MW | R600a | Gothenburg (SE) | Atlas Copco & Strabag [3]

https://www.man-es.com/company/press-releases/press-details/2021/02/04/man-energy-solutions-liefert-erstes-sektor-%C3%BCback
 https://www.man-es.com/company/press-releases/press-details/2023/09/28/man-energy-solutions-to-provide-climate-neutral-districtions-internation-internatin-internation-internatio-internatio-internatio-internatio-inte

[4] https://www.linkedin.com/posts/strabag_strabag-workonprogress-construction-activity-7193844579572310016-yG15?utm_source=share&utm_medium=member_desktop

Rasmus Rubycz, Market Manager New Energy at Atlas Copco:

"Flammability was never really an issue during the tendering phase, as we have many examples for large processes plants with full ATEX / explosion protection. The key is a good ventilation concept and an open mind" [4]

Review of High-Temperature Heat Pump Technologies – IEA HPT Annex 58

TRL level	4-9		
Average specific cost	200 €/kW - 1500 €/kW		
Capacity	0.02 MW - 100 MW		
Max. supply temperature	100 °C - 280 °C		
Availability	Geographical dependent, e.g. between Europe and Japan		
Number of technologies	37 different technologies		

www.heatpumpingtechnologies.org/annex58

HTHPs present in the installations of each client can upgrade the heat at useful levels with a high COP (2.6 to 5.9). adapting the temperature glide of the heat sink.

HTHPs, which local renewable energy sources can power and promote decarbonization in industries connected to district heating networks, independently of the distribution temperature, avoiding the need for fossil fuel boilers.

FACTS ABOUT THE TECHNOLOGY

Heat supply capacity: 120 kW to 2000 kW

emperature range: useful heat inlet 80 °C to 120 °C and outlet 100 °C to 160 °C / heat source inlet 60 °C to 100 °C and outlet 40 °C to 80 °C

Vorking fluid: adaptable to the application R245fa, R1336mzz(Z), R1233zd(E) compressor technology: Screw

Specific investment cost for installed system without integration: 200-400 € per kW₆ but It varies between temperature levels and

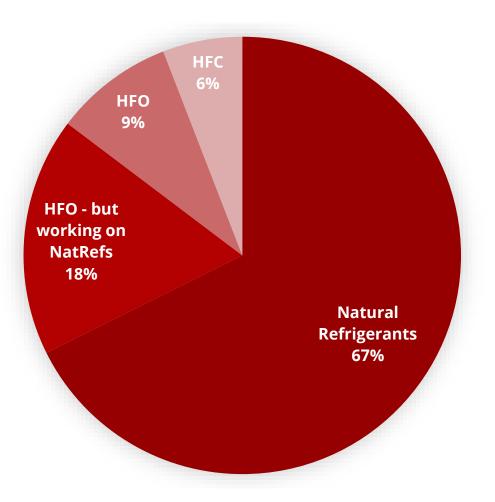
TRL level: TRL 7 - prototype demonstration

Expected lifetime: 20 years (with the possibility of hiring Service to extend lifetime and ensure the highest energy performance)

Size: weight 5.5 to 8 tons / surface required 5.2 to 13 m² / height 2.2 to 2.5 m

Contact information

All information were provided by the supplier without

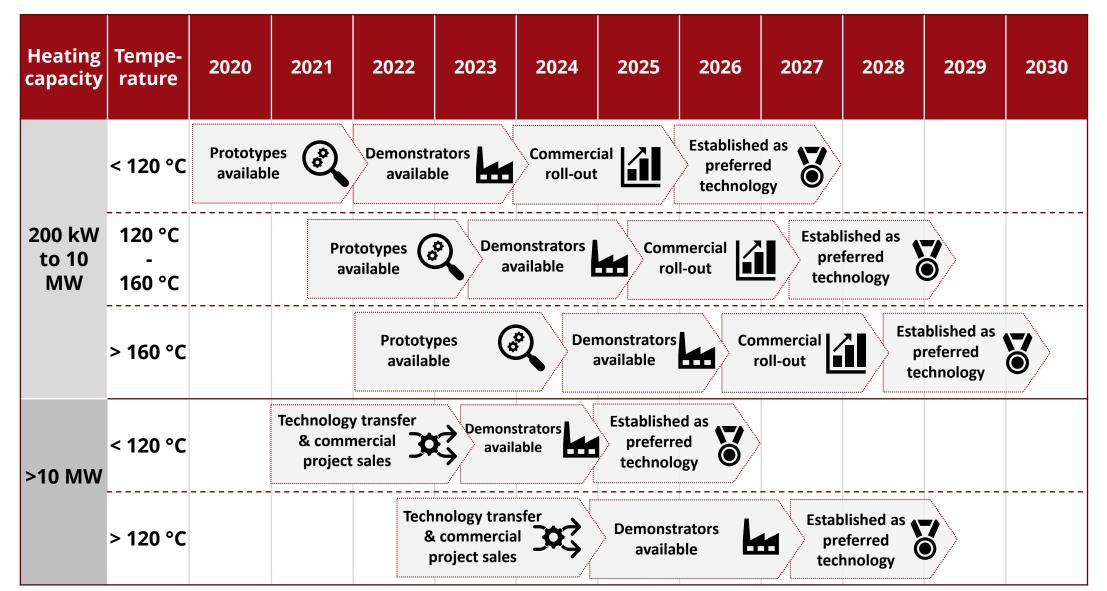

third-party validation. The information was provided as an indicative basis and may be different in final installations depending on application specific parameters.

https://heatpumpingtechnologies.org/annex58/task1/

Maximum supply temperature as a function of capacity

Working Fluids in HTHP Technologies

Frequently used natural refrigerants:


- CO₂ (R744)
- Steam (R718)
- Ammonia/Water (R717/R718)
- Hydrocarbons (R600, R600a, R601, R601a)

Frequently used HFOs:

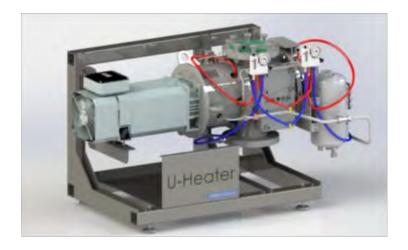
- R-1233zd(E)
- R-1234ze(E)
- R1336mzz(Z)

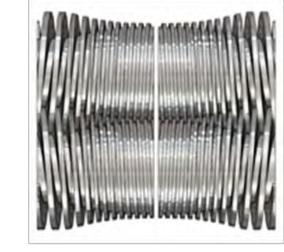
Source: Information based on IEA HPT Annex 58 and other publicly available information

Development Perspectives for HTHPs towards 2030

Source: IEA HPT Annex 58, Task 1 Report – B. Zühlsdorf et al. 2023

SuPrHeat Hydrocarbon System

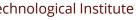



- Cascade system
- Butane (R600) → 120 °C
- Isopentane (R601a) \rightarrow 150 °C
- Heating capacity: **500 kW**
- Bock piston compressors
- Full-scale test at DTI: ongoing
- On-site demo: Q3-4/2024

SuPrHeat Steam System

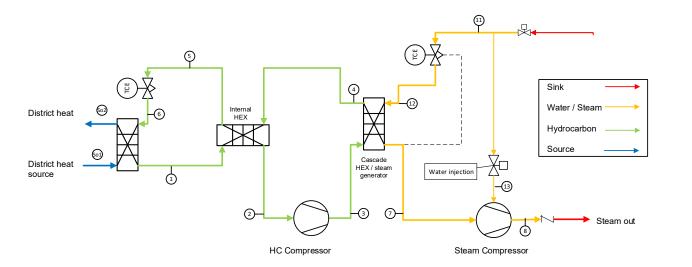
- Spindle compressor: High pressure ratio and $\rm T_{\rm Lift}$ up to 60-80 K
- 2-stage turbo compressor: high flows and T_{Lift} up to 50 K
- Full-scale test at DTI: 08/2024
- On-site demo: 01/2025
- Currently in design and construction phase
- Direct integration in steam network possible

FORCO₂ – Fenagy CO2 System


- Hybrid air and water source system
- CO2 (R744) → 70 °C
- Heating capacity: 1800 kW
- Bitzer piston compressors
- Güntner hybrid air coil
- Full-scale test at DTI: ongoing
- On-site demo: 08/2024

Danmarks Tekniske Universitet

InterHeat Hydrocarbon System



- Cascade system
- Isobutane (R600a) → 120 °C
- Isopentane (R601a) → 160 °C
- Heating capacity: 500 kW
- Frascold compressors
- Full-scale test at DTI: Q2/2024
- On-site demo: Q4/2024

InterHeat Hydrocarbon & Steam System

- Cascade system
- Butane (R600) → 110 °C (steam)
- Steam (R718) → 160 °C
- Heating capacity: 1000 kW
- SRM screw compressors
- Full-scale test at DTI: Q2/2024
- On-site demo: Q1/2025

INTER HEAT

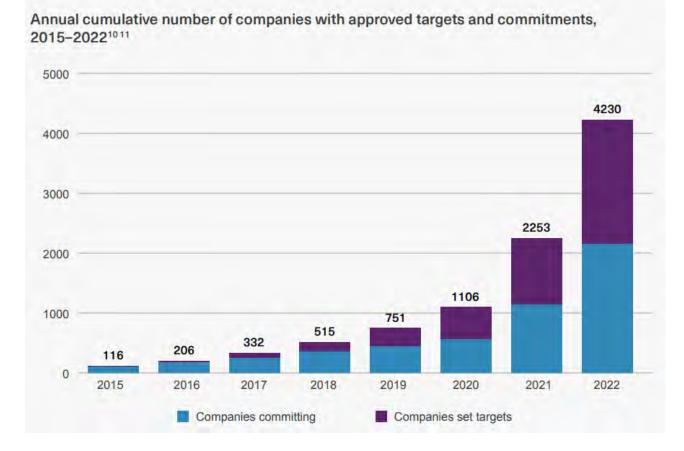
- Refrigerant: **n-Pentane (R601)**
- Heat Sink: steam at T_{Sat} = 138 °C
- Heat source: vacuum steam at T_{Sat} = **80 °C**
- Heating capacity: 4 MW
- GEA Screw compressor
- On-site demo: Q4/2024

HTHP Symposium

- Meeting place for HTHP Community
- 23. & 24.01.2024 DGI Byen
- +80 presentations
- +25 exhibition stands
- +400 participants

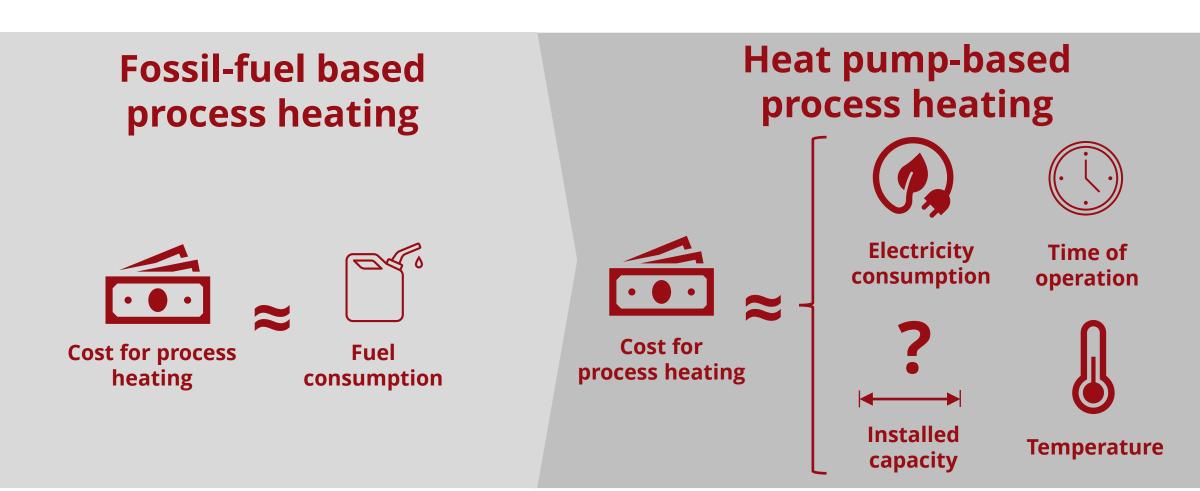
http://hthp-symposium.org/

End-users


The transition towards HP-based process heating

Decarbonization is gaining traction

DRIVING AMBITIOUS CORPORATE CLIMATE ACTION



https://sciencebasedtargets.org/ [accessed: 21.01.2024]

Source: https://sciencebasedtargets.org/resources/files/SBTiMonitoringReport2022.pdf

Converting to HPs requires Shift of Mindset

Technology lock-in

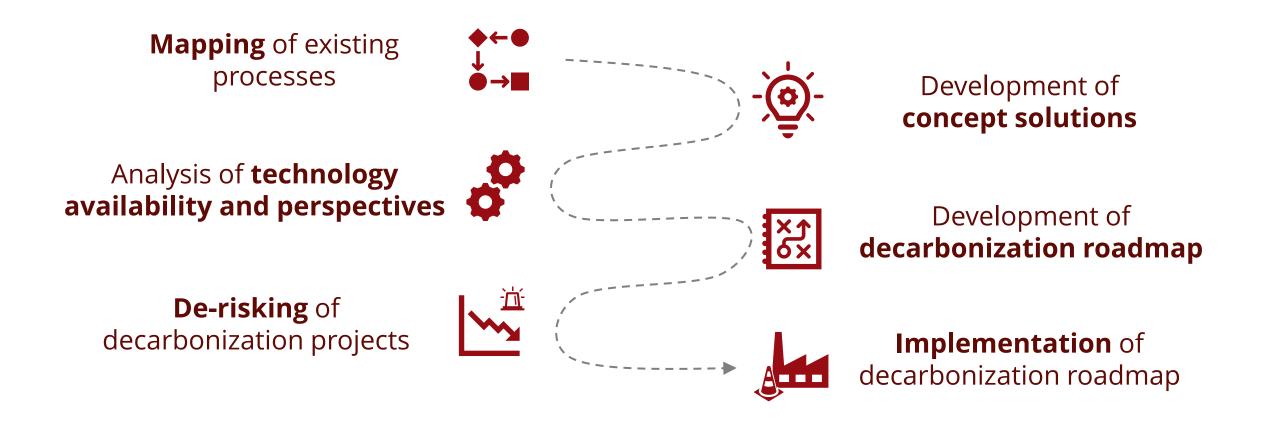
Wrong investments = Slower decarbonization

Process equipment designed for high pressures

Waste-heat recovery with too large temperature differences

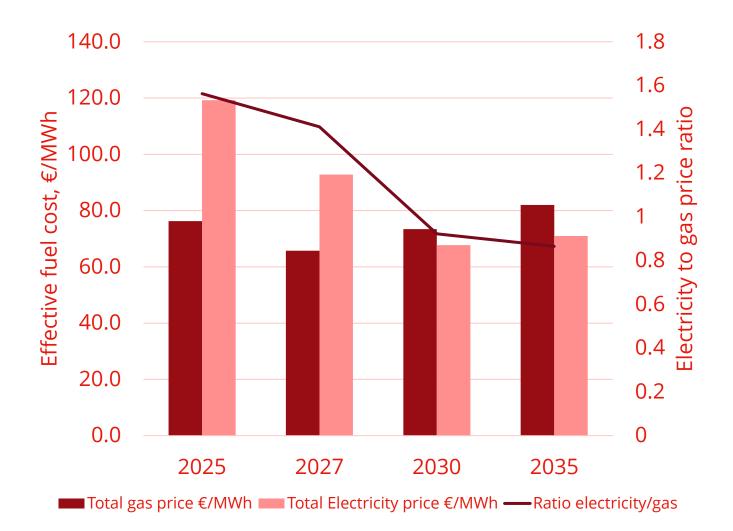
Waste heat recovery from combustion processes

Waste heat supply for external purpose



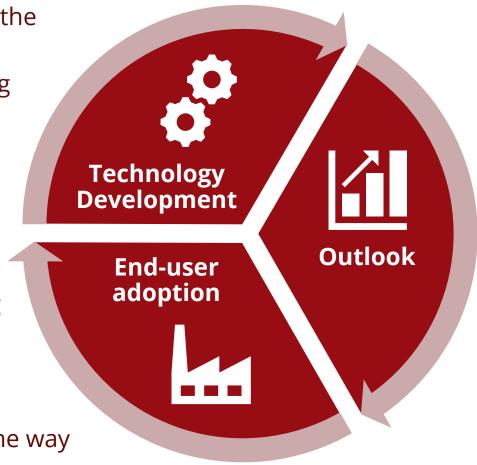
Investments in process equipment not optimized for new energy supply

Investments in energy utility based on wrong or short-sighted assumptions


Long-term planning is key to success

What's next?

Development of fuel prices



- Data from the Danish Energy Agency climate status and outlook 2023
- Transportation cost for electricity varies depending on contracts and area's – average assumed
- Taxes for electricity are limited to EUminimum

Conclusions & Outlook

- Technologies are entering the market
- Technologies are becoming more competitive
- Increasing number of competitors

- Decarbonization is gaining traction
- HP-based process heating requires shifted mindset
- Frontrunners are paving the way
- Wide-scale adoption supported by market developments

- Boundary conditions are becoming more favorable
- Scaling of supply-chain
- Learnings ahead from implementations
- Communication & education are key to success

Benjamin Zühlsdorf, PhD

Innovation Director

<u>bez@teknologisk.dk</u>

+45 7220 1258