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ABSTRACT 

Decarbonizing millions of buildings equitably, effectively, and affordably demands 
urgent innovation and financial resources, but market data for retrofit solutions is largely 
unavailable. To address this gap, our team extracted details of over 130,000 multifamily 
buildings—nearly every one in New York State—by using machine learning to develop a novel 
process to analyze over 650,000 aerial images. By benchmarking our results against data 
collected in 391 in-person site visits, we were able to assess the model’s performance compared 
to human observation across a range of building styles, sizes, densities, and vintages.  

The resulting dataset contains dozens of attributes for each multifamily building. Energy 
efficiency and clean energy programs, manufacturers, providers, and others can search and filter 
these data to determine the distribution and precise locations of retrofit candidates, build capacity 
based on accurate information about the size of the market, and prioritize investments in 
technologies that address market gaps.  

This paper describes our challenges with and solutions for systematically acquiring 
multiple aerial images of each building; distinguishing the targeted buildings from others nearby; 
training and deploying instance segmentation models to identify building features; and analyzing 
the outputs to calculate building configurations and dimensions, window-to-wall ratios, rooftop 
equipment quantities, and other metrics. We also explore how the results of this study can be 
used to direct investment in building retrofit programs, the performance and limitations of our 
technique and how to apply it in other jurisdictions, and topics for future research. 

Introduction 

The residential and commercial construction industry must make substantial changes to 
achieve the rate of building decarbonization necessary to meet the objectives established by the 
Paris Agreement and the New York State (NYS) Climate Leadership and Community Protection 
Act. Upgrading or retrofitting over 100 million buildings across the United States in the next 30 
years will require the industry to create standardized offerings that appeal to sizable populations 
of building owners (Harris 2021) by defining customer segments and designing products or 
offerings that deliver significant and evident value to those customers. For the construction 
industry, manufacturers need to identify buildings that are a good match for their current or 
future product offerings, but data at this level of granularity is not currently available.  

The process of identifying and delivering viable new offerings involves identifying the 
size of the market for a packaged solution, forecasting demand, making decisions about resource 

 
1 Any opinions expressed, explicitly or implicitly, are those of the authors and do not necessarily represent those of 
the New York State Energy Research and Development Authority. All results and analyses described were 
developed by Cadmus and its subcontractors. 
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allocation, developing a price estimate for the fully installed solution, estimating the energy and 
costs that the solution will save, and then engaging proactively with building owners to discuss 
the bundled measures. For example, an exterior insulated panel manufacturer may want to know 
how many masonry buildings in a region have a similar volume, window-to-wall ratio (WWR), 
and height to estimate how many are a match for a specific retrofit solution. Decisions about 
whether to increase capacity, develop a packaged solution, partner with an installer, or begin an 
installer training (Harris 2021) will impact the cost and availability of the selected solution in 
that area. Existing data on multifamily buildings is often sparse and unreliable, with basic 
attributes typically generalized at the property level and many useful variables such as WWR and 
roof configuration rarely if ever reported. Manufacturers face a high degree of uncertainty about 
their investments and will be less likely to bring new solutions to market without the ability to 
systematically identify buildings that meet specific criteria.  

Access to detailed information about buildings and equipment allows installers to group 
buildings that may benefit from the same solution and to perform a general remote site review 
before going to the location. For example, information about ease of access to the property and 
features like fire escapes or rooftop equipment may streamline selecting and installing 
appropriate solutions. Remote screening reduces the total cost of solution deployment, enabling 
new offerings to be more cost-effective and reach more customers.  

The New York State Energy Research and Development Authority (NYSERDA) 
contracted with Cadmus to conduct its first statewide baseline study of multifamily buildings, 
including a combination of interviews and on-site inspections to collect detailed data on building 
and equipment specifications and operations. Data processing in these studies involves statistical 
sampling and weighting methods to produce reliable estimates of overall equipment saturations 
and other valuable metrics at an overall population level and for individual strata. However, such 
studies generally rely on proxy variables such as total floor area and are limited in their ability to 
identify individual building locations and attributes. In addition to conducting a traditional 
baseline study, Cadmus developed a novel approach to locate and analyze externally visible 
attributes of nearly every individual multifamily building across the state. The resulting dataset is 
more comprehensive than a traditional baseline study and is accessible via a public dashboard for 
companies to remotely match a particular solution to a particular building—a task that cannot be 
performed at a large scale today but that will enable companies to target building 
decarbonization investments at the rate and scale necessary to achieve ambitious climate targets. 

Methodology 

The primary goal for the computer vision analysis Cadmus performed was to develop a 
dataset of building characteristics for the full population of multifamily buildings in NYS that 
NYSERDA and market actors could use to determine market sizing information for new 
offerings or identify potential retrofit candidates. The final dataset consisted of building 
characteristics derived from traditional data sources and through computer vision analysis of 
aerial images. Because most existing data sources report at the parcel level, we used advanced 
property analytics to disaggregate this data to the building level.  

Population Data 

Cadmus used Res-Intel’s Benchmark.AI Multifamily Characterization Toolset to develop 
an inventory and initial metrics for the full population of multifamily buildings in NYS based on 
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traditional public and private data sources (Nelson and Johnson 2022). Using county and 
municipal parcel data, census data, and commercial property data from this toolset, combined 
with a dataset of low- and moderate-income multifamily buildings previously produced for 
NYSERDA, the team identified multifamily sites and their attributes. This process sourced 
building footprint data from county and city GIS systems, OpenStreetMap, and Bing Maps to 
locate individual buildings, then extracted building heights from the NYS GIS program office's 
Light Detection and Ranging (LiDAR) data, which is generated using laser measurements from 
an aircraft (NOAA 2024).  

The team then disaggregated these parcel-level attributes, distributing and recalculating 
those reported as a single value for an entire property into distinct values for individual buildings 
on that property. Because parcel data reports a single value for address, number of floors, and 
units even for properties that comprise more than one building, our analysis matched all building 
footprints to the parcel, geocoded individual addresses and estimated floors for each building, 
and distributed reported residential units among the buildings proportionally by approximate 
total floor area, resulting in more-granular building-level population data. 

Aerial Imagery 

Before starting our analysis, we conducted a thorough review of public and commercial 
imagery sources, considering factors such as coverage, image resolution, API and bulk access 
options, measurement features, and cost to ensure the selection of comprehensive and high-
resolution imagery for our study area. While oblique (side-view) and 3D imagery exists from 
free sources such as Google Maps and Bing Maps, licensing restrictions preclude using those 
sources for automated analysis. Other public domain aerial image sources such as those provided 
by state and federal governments typically offer only low-resolution orthogonal (top-down) 
images. Thus, Cadmus opted to use a commercial image vendor with existing statewide coverage 
in New York and an image access and measurement API for bulk analysis.  

We used the central latitude and longitude of each building as the search parameter for 
the vendor’s API to identify and download sets of high-resolution images like those in Figure 1, 
consisting of one orthogonal and four oblique images for the area around each building in our 
population. Analyzing oblique imagery from multiple directions in addition to orthogonal 
imagery captures the most complete perspective of a building (Wilson and Williams 2019). We 
also retrieved additional image metadata such as the original capture date, ground surface 
resolution, and positional reference data from the vendor’s image retrieval API. 

 

 

Figure 1: Example of multifamily buildings seen in orthogonal (left) vs. oblique (center and right) 
aerial imagery captured via low-altitude fixed-wing aircraft. Imagery source: Pictometry 
International Corp. Copyright © 2023. All Rights Reserved. 
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Computer Vision Model Training 

Computer vision uses human-labeled example images to train a machine learning model 
to recognize similar objects within new images (V7 Labs 2024). Before training could begin, 
Cadmus had to select an appropriate model type for classifying each feature. We considered two 
types of models—object detection and instance segmentation, depicted in Figure 2. Object 
detection provides a simple bounding box around each instance of an object, while segmentation 
provides a pixel-level mask around each instance or area of the image. Object detection is 
simpler and much more efficient to train, but segmentation is more precise—especially for 
complex shapes. We ruled out image classification, an even simpler method that applies a single 
category to an entire image, because a single image may contain numerous buildings and 
features. Based on our evaluation, we determined that instance segmentation was the best fit for 
identifying irregularly shaped features like building roofs, walls, and windows, while object 
detection was suitable for identifying small, isolated items like exterior HVAC units. 
 

 
Figure 2: Example of computer vision identification methods. Imagery source: Pictometry 
International Corp. Copyright © 2023. All Rights Reserved.  

 
Cadmus created two training datasets: one for oblique images and one for orthogonal 

images. We developed the labeling schema, or classes, based on common visually identifiable 
building characteristics for the NYS multifamily building population. Our final labeling schema 
and quantity of training images for both datasets is summarized in Table 1.  

Table 1. Labeling schema classes, model types, and training data 

Dataset Training file count Class Method 
Oblique 265 Building Segmentation 

Roof Segmentation 
Wall Segmentation 
Window Segmentation 
Window AC Object detection 
Minisplit Object detection 

Orthogonal 330 Flat roof Segmentation 
Shingle roof Segmentation 
Metal roof Segmentation 
Rooftop patio Segmentation 
Solar panel Segmentation 
Skylight Segmentation 
RTU Object detection 
Split system Object detection 

Image Classification 

City 

Object Detection 

Building 

Instance Segmentation 

Wall Roof 
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A team of human annotators labeled the training images, drawing a polygon around each 
individual instance of the targeted features and assigning it to the corresponding class label. 
Figure 3 shows an example of a training image with hundreds of manually annotated features 
alongside an example of the automated outputs for an image processed through the final model.  

 

 
Figure 3: Example of model training image (left) and model output image (right). 
Imagery source: Pictometry International Corp. Copyright © 2023. All Rights Reserved.  

We followed an iterative approach, shown in Figure 4, to train computer vision models 
that would perform well across the diverse building stock for this project. Team members with 
expertise in building systems worked together to annotate the initial sample of images and 
establish clear criteria for additional annotators to distinguish building features and assign them 
to the correct class. As we developed the models, we assessed their performance on test images 
and analyzed errors to identify patterns and challenges. We iteratively augmented the training 
datasets and retrained the models with additional instances for classes that did not consistently 
identify the targeted features, addressing weaknesses identified in each evaluation until the 
models demonstrated the performance described in the Evaluation of Results section. The cloud-
based software we used required a minimum of 10 images and 100 instances to begin training a 
new model, but in practice with our dataset we needed at least 1,000 instances for the model to 
correctly identify features on the majority of the test images. The greater the visual variation of 
the overall images and the specific features being analyzed, the more example instances were 
required for the model to learn to reliably distinguish them. Cadmus trained the model using at 
least five images from different zip codes within each unique combination of three building 
sizes, five vintages, and four regions across the diverse building population to ensure that each 
relevant class was adequately represented. 

 

 
Figure 4. Computer vision model development process. 
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Model Deployment 

To ensure the correct identification and assessment of multifamily structures, especially 
in dense urban areas, we developed methods for distinguishing targeted buildings from others 
nearby. Available aerial imagery was often produced at a high range and high resolution, 
providing data on entire neighborhoods in which we wanted to focus on only one or two 
buildings.  

Using the building footprints from our population data development process, we cropped 
the high-resolution images to include only the clusters of multifamily buildings within our 
population. Using existing footprint data sources was expedient, ensured consistency with other 
datasets, and allowed us to correctly separate buildings with adjacent walls, which are common 
in urban areas like New York City (NYC). For future research in areas without existing footprint 
data, solutions are available to extract footprints from medium- and low-resolution orthogonal 
images (Singh et al. 2022), although this process requires additional computation and tends to 
produce less-accurate footprints compared to cadastral sources.  

Scaling our methodology involved running the final models on 123,000 orthogonal 
images and 488,000 oblique images, with each image often containing multiple buildings of 
interest. To reduce the processing load of the full population image dataset, we used a batching 
process and cropped images to show only buildings of interest, giving our models less data to 
interpret and limiting the scope of required annotation. 

Output Analysis 

Cadmus analyzed the image annotations the computer vision model produced to extract 
useful building metrics including window-to-wall ratio, building height, primary roof material, 
and count of externally visible HVAC equipment. A summary of key metrics in the final dataset 
is shown in Table 2. We detail the process of filtering annotations from an entire image to only 
those relevant to an individual building in the Challenges and Solutions section.  

  Table 2. Sources of building characteristic data in the final dataset  
Characteristic Building population Image analysis 
Unique Building Identifier (UBID)   
County, address, and zip code   
Assessor’s parcel number or BBL/BIN   
Building centroid (latitude/longitude) and footprint   
Year of construction   
Footprint area and perimeter   
Building height and floors   
Envelope/facade square footage   
Window-to-wall ratio   
Roof construction and configuration    
Presence of rooftop equipment  
(e.g., HVAC units, solar PV, skylights) 

  

Number of residential units   
Estimated interior square footage   
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Window-to-wall ratio. To determine the WWR for a building, we calculated the total area of all 
window and wall annotations from each available oblique image orientation. We calculated areas 
directly in pixel units for each orientation to allow for differences in image resolution and scale 
ratio, and then we divided the resulting window area by wall area to calculate the dimensionless 
ratio without requiring conversion to feet.  

Building height. We estimated the building height from each oblique image by taking vertical 
cross sections of all wall annotations associated with the targeted building and identifying the 
longest cross-section line, as shown in Figure 5. We converted the height from pixels to feet 
using the vertical scale ratio provided by the image vendor API for that section of the image. 
 

 
Figure 5: Examples of building height measurement using vertical cross-section detection. 
Imagery source: Pictometry International Corp. Copyright © 2023. All Rights Reserved. 

We compared the estimated height from oblique images to the building height from 
LiDAR data (if available) and selected the most reliable height to report from the available 
estimates. Our testing showed that when LiDAR height and image analysis height are close, the 
LiDAR height is more precise because of the nature of how LiDAR measurement works. In 
those instances, we reported the LiDAR height as the final height value. Otherwise, we selected 
the most probable height by looking at the building’s reported number of floors and at clusters of 
similar image-based height estimates from the building’s multiple images.  

Number of floors. Similarly, to determine the number of floors in a building, we developed 
selection criteria to choose the most reliable value considering data points from the image 
analysis and the population dataset. The population dataset reports the number of floors as a 
single value for an entire parcel, which may contain multiple buildings of different heights. 
When a building’s final height estimate aligned with the reported number of building floors for 
the parcel, we used the reported number of floors from the parcel data as our final value. When 
the estimated building height did not align with the parcel’s reported number of floors, we 
predicted the number of floors from the final building height estimate by assuming an average 
floor-to-floor height of 11.6 feet. We derived this assumption from a distribution analysis of 
buildings from the initial population dataset where only one building is on the parcel, LiDAR 
data is available, and the average height per floor is in a plausible range for the number of floors.  

Total square footage. From the predicted number of floors, we calculated the total multifamily 
square footage as the building’s footprint area multiplied by the number of residential floors and 
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adjusted the predicted number of floors if the building was reported to be a mixed commercial 
and residential use building, assuming that the first floor of a mixed-use building is commercial. 
Based on the building’s calculated multifamily floor area, we estimated its number of residential 
units by allocating the reported number of residential units on the parcel among all multifamily 
buildings on the parcel proportionally to each building's fraction of the total estimated 
multifamily floor area for all buildings on the parcel. 

Roof material and components. We analyzed the orthogonal image of each building to 
determine its primary roof material, the presence of solar panels and skylights, and the count of 
rooftop HVAC units. In cases where the segmentation model yielded overlapping roof-type 
annotations, we prioritized the annotation for each pixel with the highest confidence score 
reported by the model. We then determined the primary roof material based on the class with the 
highest coverage of the building’s footprint area.  

Exterior HVAC systems. We determined the number of visible exterior HVAC system objects 
for the building by counting split systems and packaged unit bounding boxes that overlapped 
with the building footprint on the orthogonal images and counting window AC bounding boxes 
contained within a wall segment attributed to the building in oblique images.  

Challenges and Solutions 

Artificial intelligence (AI) instance segmentation is well documented and can be 
implemented with off-the-shelf software and cloud services. Producing usable computer vision 
models that consistently identify the desired segmentation classes was relatively straightforward. 
However, preparing the appropriate images and associating the model outputs with the correct 
buildings presented numerous technical challenges, and analysis at a statewide scale demanded 
solutions that could reliably be run autonomously across a diverse population.  

Conversion Between Image and Spatial Coordinates 

Figure 6 demonstrates images for which our model has annotated similar features on 
multiple adjacent visible buildings that must be differentiated for analysis. This requires precise 
conversion between image pixel coordinates and physical world coordinates.  

 

 
Figure 6: Examples of oblique images with multiple adjacent buildings visible. Attributing image 
features to the correct building requires converting between pixel and spatial coordinates. Imagery 
source: Pictometry International Corp. Copyright © 2023. All Rights Reserved. 
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Such conversions require calibration of the intrinsic lens characteristics and the exact 
position and rotation of the camera used to take each photo (Zhang 2000); however, such details 
are generally not available for commercial imagery. Instead, vendors conduct these calculations 
internally using proprietary data and share results via an API. The imagery vendor we contracted 
for this project provided us with basic image metadata via its API, including the latitude and 
longitude coordinates of each corner of the image. Direct conversion of multiple points between 
the image and world coordinates was not available in the API service we used.  

We converted ground-level spatial coordinates to and from corresponding image pixel 
coordinates by representing each with a cartesian coordinate system and developing a 
transformation matrix to convert between them, enabling us to identify the region of the image to 
analyze and to relate image analysis results back to a physical location. We used affine 
transformation for orthogonal images. The oblique images had a nonlinear scale, meaning 
equidistant world coordinates farther from the camera position were closer together in pixel 
coordinates. Using the four corner world coordinates from the image vendor API and the image's 
pixel dimensions, we created a perspective transformation matrix using a projected coordinate 
system to provide the correct nonlinear projection. The resulting matrix can be applied to any 
singular coordinate point or to all points in a complex polygon such as a building footprint or 
image annotation for seamless conversion between coordinate systems. 

The perspective transformation approach was effective in converting between coordinate 
systems in most cases; however, precision sometimes declined for images covering a large 
physical area, particularly in areas with significant variation in terrain elevation. The location 
data provided by the image vendor’s API is calibrated to the actual surface elevation using a 
digital elevation model, introducing a third dimension to the underlying data that is not exposed 
via the API and cannot easily be recreated. The impact is most significant when a particularly 
steep terrain feature is near a single corner of the image resulting in an uneven distance scale 
along an image axis. We did not identify a suitable solution to this issue with the data available 
to us in this project.  

Vertical Projection of Building Footprints onto Oblique Images 

We successfully applied the perspective transformation to translate building footprints 
into oblique image coordinates. Cropping the image and selecting the relevant annotations 
required vertical translation of the ground-level footprint. We used the vendor-provided 
measurement API to calculate the number of pixels corresponding to the presumed height of the 
building based on estimated height in feet and then translated the footprint vertically.  

A challenge emerged when we reviewed the results of this method: because the image 
perspective was rotated based on the angle of the camera in flight, projections assuming a 
completely vertical image of a building did not properly align with the targeted building on 
images with a tilt. We were able to develop a vendor-specific solution using image metadata to 
calculate a correction rotation, shown in Figure 7, which we applied to the image during the 
cropping process.  
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Figure 7: An original image (left) is first rotated to correct for sensor angle, next building footprints 
are projected onto the image (center), then translated to form a bounding polygon around each 
building. Imagery source: Pictometry International Corp. Copyright © 2023. All Rights Reserved. 
 
After we corrected the rotation, the vertical projections consistently located the desired 

buildings within a large image correctly and efficiently, enabling automated cropping and feature 
extraction. This solution was successful for most of our images; however, it is not generalizable 
to other image sources. We researched other existing automated image alignment tools and 
algorithms, such as those designed to identify sideways images in smartphone photo galleries, 
and identified RotNet as a potential solution (Sáez 2017). However, testing showed that RotNet’s 
pre-trained models were not effective with oblique aerial imagery, likely because the training 
dataset consists primarily of street-level photographs. We recommend further research into 
training RotNet with aerial imagery, which was not possible within the scope of this project.  

Identification and Segmentation of Overlapping and Obstructing Buildings  

Although the vertically projected building footprints were successful in identifying the 
area of an oblique image where a building should be located, the accuracy of this mapping varied 
with the precision of the underlying footprint GIS data, image metadata, and the initial building 
height estimate. Projected building footprints are generally sufficient to identify freestanding 
buildings but are often inadequate to distinguish adjacent buildings in dense urban areas. Target 
buildings were often obstructed on oblique images by adjacent buildings, vegetation, terrain, or 
other elements in the photo. To resolve these issues, we added to our oblique instance 
segmentation model a building outline class, which we trained to segment each distinct building 
even when it touched adjacent buildings. In the analysis process we overlay the projected 
building footprint with the building outline annotations to predict the area of the image 
containing relevant imagery of the selected building.  

This approach was effective in most areas of the state, although some buildings were 
fully obstructed in some orientations by adjacent buildings in dense urban areas including NYC. 
For images within NYC only, we used official building footprints with accurate height 
measurements from the city GIS office. We vertically projected building footprints of the 
targeted building and all adjacent buildings in the image and excluded annotations in parts of the 
image where the targeted building footprint was obstructed by adjacent buildings. Figure 8 
provides an example of this process, which reduced the inclusion of annotations of obstructing 
buildings. Similar data was not readily available elsewhere in the state; this limited us to 
targeting annotations based on the building outline segmentation model, which occasionally 
resulted in detecting a portion of adjacent obstructing buildings. Future studies could address this 
issue by developing obstruction masks directly from LiDAR data where available.  
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Figure 8: Example of selecting only relevant annotations (right) by identifying nearby building 
footprints (left), projecting the outline of the targeted building onto the image (center-left), then 
projecting adjacent buildings onto the image (center-right). Imagery source: Pictometry International 
Corp. Copyright © 2023. All Rights Reserved. Basemap source: NYC DoITT, OpenStreetMap.  

Correction for Shifted Orthogonal Images 

Orthogonal imagery providers typically orthorectify images to align imagery with the 
underlying topography, making it possible to take measurements directly off the image. 
However, orthorectification only ensures that features at ground level are true to scale. The 
primary application for orthogonal images in this project is detection of rooftop materials and 
equipment, which must be attributed to each building’s footprint geometry. The farther a 
building is from the center of the image the more likely there is to be perspective distortion, 
causing a portion of the side of the building to be visible and the rooftop position to be 
transposed from the ground-level footprint of the building. The higher a rooftop is, the greater 
the offset may be. Imagery captured by lower-flying aircraft contains more detail but exhibits 
greater distortion of elevated features compared to higher-altitude captures. The imagery used for 
this project was captured at varying resolutions and altitudes, resulting in inconsistent offsets that 
made attributing rooftop features to the correct building footprint challenging.  

Cadmus developed and applied a translation factor algorithm to systematically align the 
building footprints with the roof positions on each image. We calculated a loss function 
comparing the area of the building footprint polygons to the area of the roof annotations. The 
closer the building polygons are to the detected rooftop area on the image, the lower the output is 
of the loss function. We applied an optimization algorithm to minimize the loss function by 
adjusting x and y offset input variables, shifting the footprints until they best overlapped with the 
rooftop annotations. We used these aligned footprints, demonstrated in Figure 9, for all 
subsequent analyses of the image. We found a mean required shift distance of 35 pixels with a 
standard deviation of 37 pixels, but some images required a shift of over 400 pixels to align the 
footprints to the rooftop positions. This solution depends upon existing building footprint data, 
but a proposed alternate approach uses a machine learning model to segment roof area from the 
sides of a structure (Chen et al. 2021), which could enable simultaneous roof and ground-level 
footprint extraction.  
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Figure 9: Minimizing overlap between rooftop annotations (left) and initial ground-level building 
footprints (center) shifts the building footprints to align with roof level (right). Imagery source: 
Pictometry International Corp. Copyright © 2023. All Rights Reserved. 

Temporal Alignment of Disparate Data Sources 

 Aggregating and aligning data from disparate sources with varying refresh cycles led to 
assorted issues. Some datasets such as county property assessor data are typically updated 
annually while others are updated on an as-needed basis. LiDAR data in some areas of NYS had 
not been updated since before 2014 at the time of this study. In addition to the variable data 
update timelines, buildings can exist in various stages of completion that are not documented in 
property records. We observed new buildings under construction in recent aerial images where 
property data indicated a decades-old year of construction, and we found properties with a recent 
year of construction with either empty plots of land or old buildings. We flagged instances where 
the year of construction was reported to be more recent than the image capture date and found 
that less than 0.2% of the images analyzed predated the reported year of construction.  

We did not track the update dates for all primary data sources we used in the population 
analysis. For future projects we recommend tracking the last-updated date for all data sources 
used throughout the analysis, including all aggregated data sources for the property analytics 
process. 

Photogrammetric 3D Models as an Alternative to 2D Image Analysis 

Early in the project the team evaluated using photogrammetric 3D models in lieu of 
directly analyzing 2D images. A georeferenced digital 3D model confers many advantages, 
including the ability to easily distinguish separate buildings, simplify measurements of heights 
and other physical dimensions, and attribute detected material types and building characteristics 
to specific exposures of the building. Prior research has demonstrated the effectiveness of 
developing photogrammetric 3D models for energy audits on individual buildings (Singh et al. 
2022); however, we did not find this approach to be cost-effective at a statewide scale. Although 
large technology companies like Google and Microsoft have constructed photogrammetric 3D 
models of many large cities including NYC for display in their consumer mapping applications, 
these models cannot be licensed for automated research use. This is likely to change in the 
coming years as advances in automated photogrammetric approaches and computing power 
increase availability of these solutions and may eventually offer a superior alternative to 
processing 2D oblique images.  
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Evaluation of Results 

We found that our process reliably estimated the core metrics of interest for many 
multifamily buildings, though it is worth noting that all machine learning algorithms produce 
imperfect estimates. This computer vision analysis was specifically constrained by the visibility 
of building features and overall quality of the aerial images. For our evaluation, we used real-
world data from 391 site visits and manually reviewed the results to verify the true value for each 
compared metric. 

Analysis of Quantitative Metrics 

We developed a statistical analysis for quantitative values present in both datasets, 
including the number of floors, gross building square footage, and WWR, summarized in Table 3 
across several strata. Other metrics including number of residential units, total building height, 
and building façade area were not directly comparable to the collected site visit data. 

Table 3: Summary of estimated mean across full building inventory (N=122,604), and average 
difference between verified values and corresponding image analysis values from 391 site visits   

Category Stratum 
Building inventory mean and average difference in sample 
Building floors Gross floor area WWR 

Building Size 1-3 stories 2.5  0.11 10,500  1,200 0.104  0.005 
4-7 stories 5.0  0.05 24,900  1,400 0.122  0.011 
8+ stories 13.8  0.08 180,900  13,800 0.165  0.026 

Density Urban 4.4  0.05 29,700  2,700 0.118  0.001 
Rural 2.4  0.09 13,800  1,100 0.078  0.008 

Commercial 
space present 

Mixed use 5.6  0.38 45,700  24,000 0.121  0.017 
Residential  4.1  0.11 24,800  60 0.115  0.004 

Height source LiDAR 4.4  0.08 27,500  1,300 N/A   
Image analysis 4.2  0.59 43,400  10,600 N/A   

Overall 4.4  0.05 29,100  2,600 0.116  0.001 

 = image analysis underestimates compared to site visits,  = image analysis overestimates compared to site visits 

Our process underestimated WWR by 0.001 on average and was most reliable for 
buildings that had minimal obstruction for all oblique orientations. Higher-resolution images 
with higher-confidence window annotations also improved the reliability of the WWR estimates. 
If the obstructed side of a building had fewer or more windows than the other sides, this distorted 
the building’s reported WWR. Greater discrepancies also existed in urban areas due to window 
and wall annotations for an obstructing building being mistakenly associated with the targeted 
building. We believe the WWR estimates are sufficiently accurate to support screening buildings 
for cladding retrofit solutions.  

A building’s calculated number of floors is an input for calculating gross floor area and 
number of residential units, making it an important metric for the reliability of results. Our 
analysis was more likely to underestimate the number of floors in low-rise buildings and to 
overestimate them in mid- and high-rise buildings. The predicted number of floors matched our 
site visit observations for over 80% of the sampled buildings, with a mean difference of only 
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0.05 floors. This alignment is attributable to our process (described in the “Output Analysis” 
section above), which recalculates estimated floors only if the reported number of floors for the 
parcel are implausible given the building height. Relying on reported floors alone results in 
significant discrepancies for parcels with multiple buildings of varying height, but image-based 
floor estimates are often incorrect by one or two levels due to the wide variation in floor-to-floor 
height.  

Our process slightly underestimated gross floor area on average in low-rise buildings, 
largely due to partial basements, whereas in mid- and high-rise buildings it significantly 
overestimated the area, primarily because we assumed the same building footprint area for all 
floors, which is often not the case. Developing techniques for extracting per-floor footprints or 
full 3D models of buildings would enable more-precise gross floor and façade area estimates.  

Buildings with LiDAR data yielded more-accurate estimates for number of floors 
(underestimated by 0.08 floors on average) than image-based height methods (overestimated by 
0.59 floors on average). LiDAR data is broadly available throughout the United States and yields 
more-precise results than measuring building height from oblique imagery; however, it tends to 
be updated infrequently whereas high-resolution aerial imagery is captured annually in most 
population centers. Having both the LiDAR and image-based height estimates created a more 
robust and reliable dataset from which to estimate building height than relying on either source 
alone. Future studies primarily requiring building geometry and not focused on newer 
construction may prefer to exclusively use LiDAR data, whereas applications focusing on recent 
buildings or estimating other characteristics like WWR and building materials would be best 
served by leveraging both when available. Recent research to develop predictive models capable 
of directly estimating the number of floors from imagery, 3D models, and demographic data 
rather than estimating geometrically from measured height has also shown potential to improve 
floor level predictions (Roy et al. 2023).  

Analysis of Categorical Metrics 

We compared site visit categorical data to determine the image analysis detection rate for 
rooftop configuration, solar panels, skylights, and visible exterior HVAC systems. The image 
analysis correctly identified the presence or absence of HVAC units for the majority of the 391 
sites evaluated. Table 4 presents the model’s relative performance for various system types.  

Table 4: Summary of model performance for categorical building characteristics and 
equipment identification comparison between image analysis and site visits 

Building characteristic Overall building 
inventory mean 

Site visit comparison results 
Correct result False positive False negative 

Rooftop material 70% flat 99% 1% N/A 
Solar panel 6% detected 96% 4% 0% 
Skylights 45% detected 90% 7% 3% 
Split system AC 17% detected 98% 1% 1% 
Window AC 41% detected 91% 1% 8% 
Packaged RTUs 4% detected Insufficient site visits with these systems present to evaluate  Minisplit heat pumps 3% detected 
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Object detection worked best on HVAC units in higher resolution images, as these units 
can be quite small and difficult to detect. In some cases, particularly with split systems, the 
image analysis correctly identified HVAC units but did not attribute them to the building due to 
their distance from the building or ambiguity about which building they served.  

Conclusions 

The computer vision analysis Cadmus conducted provides valuable insights into NYS’s 
multifamily building retrofit market and has demonstrated a viable approach for developing 
accurate building inventory data at a large scale. By extracting details of nearly every 
multifamily building across an entire state and making them accessible through an interactive 
data exploration dashboard, we have produced a dataset that can be used to size the market for 
novel retrofit solutions; identify specific candidate buildings; and support virtual audits and 
remote information gathering to prepare retrofit proposals that are more relevant, accurate, and 
effective. Our approach was particularly successful at disaggregating widely available property-
level attributes to individual buildings and estimating building dimensions and structural 
configuration, including roof type and WWR. These metrics are directly relevant to targeting 
shell retrofit measures and generating building simulation model geometries, and they are useful 
proxies for energy efficiency factors that influence interior measures. For example, knowing the 
WWR and the ratio of façade area to floor area can help identify good candidates for daylight 
harvesting lighting controls, and understanding the total number of dwelling units in a building 
can help size the number of heat pump water heaters required to serve its residents. With this 
public resource with robust location data, researchers and market actors could overlay additional 
internal or public information including demographics, energy intensity, sales, and program 
participation data to produce novel market insights well beyond the scope of our project.  

With further research and training, computer vision building analysis can have even 
broader applications. Additional training data and higher resolution oblique imagery would 
improve detection of HVAC system details and could make it possible to approximate system 
capacity based on overall system size and the diameter and quantity of condenser fans. Similarly, 
further training of our model to better identify solar panel system details could offer value to the 
solar industry, where computer vision is already being deployed in the single-family residential 
solar industry to generate customer leads and expedite shading analysis.  

Computer vision holds significant promise for driving decarbonization efforts by 
providing manufacturers and stakeholders with data to make informed decisions at scale, while 
traditional site visits for acquiring building characteristic data remain important to understand the 
inner workings of a population. The feasibility of conducting similar studies in other jurisdictions 
depends largely upon the data sources available. While the specific scripts, training data, and 
models developed for this project are tailored to the building stock and data available in New 
York circa 2020 to 2022, the challenges and solutions we describe are broadly applicable. The 
growing proliferation of open-source machine learning toolkits and models and training datasets 
makes it possible for small teams of data scientists to quickly produce usable outputs; in fact, at a 
statewide scale we found data acquisition and management to be more challenging overall than 
model development. Various federal agencies produce free orthographic imagery and LiDAR 
data across the United States, but oblique imagery and more recent LiDAR and orthographic 
imagery are typically collected on behalf of individual states, counties, or municipalities. While 
pricing, access methods, and data formats can vary significantly between jurisdictions, some 
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form of oblique imagery and LiDAR data is available for most population centers nationwide. 
We expect that growing interest in combining remote sensing with machine learning may also 
drive new government initiatives or commercial offerings to streamline data aggregation, 
allowing future building science researchers to focus on developing useful models.  
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