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ABSTRACT 

Trends towards electrifying building thermal loads without commensurate energy 

efficiency measures means areas of the U.S. grid could see far higher demand growth in the next 

few decades than it has previously, in addition to shifting demand curves and peak periods. 

Combined with a progressively interactive grid featuring intermittent renewable resources and 

demand response capabilities, it will become increasingly important to understand the hourly 

impacts of building energy efficiency and electrification as granularly as possible. Building stock 

energy modeling offers a powerful tool to inform and optimize utility electrification strategies, 

understand how buildings might electrify, and inform the manner by which electrification might 

shape the demand for electricity. This paper describes the development and application of a load 

forecasting tool using publicly available building stock model datasets for an independent system 

operator (ISO). Using the tool, the ISO investigated the energy and demand impacts of heating 

electrification in their region. The conceptual approach could be used by other ISOs or utilities. 

In this paper, we present the development of the forecasting tool: building stock characterization, 

development of electrification pathways, adoption forecasting, and hourly demand modeling. We 

discuss how the specificity of the location, demographics, and building characteristics in the 

building stock datasets allow for detailed forecasts. These analysis methods can be translated to 

other organizations to prioritize high-value or -priority areas for electrification or other efficiency 

actions. We discuss potential ways to utilize these building stock datasets to create value for 

decarbonization initiatives run by various stakeholders.  

Introduction 

Commercial and residential buildings accounted for 35% of U.S. emissions in 2022 (EIA 

2023), underscoring their pivotal role in achieving climate and decarbonization goals. Building 

electrification presents a pathway to decarbonization, with a growing number of buildings and 

homes embracing this shift. The proportion of U.S. households heated by electricity has grown 

from 1% to 40% between 1950 and 2020 (Davis 2022). While electrification can lower 

emissions by utilizing renewable energy sources, it also imposes higher demands on the grid. 

Simultaneously, the grid is experiencing rising demands for electric vehicle (EV) charging, 

driven by the increasing popularity of EVs in the U.S. market. Hybrid, plug-in hybrid, and 

battery electric vehicles accounted for 13% of new light-duty vehicle sales in 2022, rising to over 

16% in 2023 (EIA 2024). Moreover, renewable energy sources are intermittent, and the grid is 

evolving toward greater interactivity. As utilities manage both rising electricity demand and 

variable supply, it will be increasingly important to understand and forecast the hourly effects of 

building energy efficiency and electrification. 

Building stock energy modeling, the practice of developing a collection of building 

models to be representative of an overall building stock, is a valuable tool for informing and 

optimizing utility electrification strategies. It offers insights into how buildings might electrify, 
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and how this impacts the demand for electricity. This paper presents the development of a load 

forecasting tool using the U.S. Department of Energy’s (DOE) ResStock™ and ComStock™ 

datasets. We describe the general methodology of the load forecasting tool, present high-level 

results of the tool for an independent system operator (ISO) application and provide an overview 

of other potential applications for these datasets by stakeholders. 

Comparison of Building Stock Dataset to Traditional Energy Information 

Resources  

The U.S. Energy Information Administration’s (EIA) residential energy consumption 

survey (RECS) (EIA 2022) and commercial building energy consumption survey (CBECS) (EIA 

2021) are national-scale building energy characteristic and consumption surveys that have been 

conducted since 1979. The California Energy Commission’s residential appliance saturation 

study (RASS) (CEC 2022) and commercial end-use survey (CEUS) (CEC 2019) are California 

surveys which have been conducted since the mid-2000's. The Northwest Energy Efficiency 

Alliance’s residential building stock assessment (RBSA) (NEEA 2022) and commercial building 

stock assessment (CBSA) (NEEA 2019) are Pacific Norwest surveys which have been conducted 

since 2012 (RBSA) and 2001 (CBSA). These traditional surveys use a combination of self-

reporting and onsite visits to collect data on building stock characteristics and use utility bills to 

describe energy consumption. They typically use engineering models to break whole-building 

energy consumption down into end uses and use standard error metrics to describe the survey 

results' reliability. 

While these surveys contain a wealth of information on the building stock, the geographic 

granularity is low because of data collection costs and the need to protect privacy. For example, 

CBECS surveys about 6,000 buildings to represent the nearly 6 million commercial buildings in 

the country.  

Building Stock Models, such as the U.S. DOE’s ResStock (NREL 2024b) and ComStock 

(Parker et al. 2023) tools, developed by the National Renewable Energy Laboratory (NREL), 

combine RECS and CBECS with higher geographic resolution datasets such as the Census’ 

American Communities Survey (ACS) (Census Bureau 2022) and the CoStar commercial real-

estate database (CoStar 2024) to create hundreds of thousands of building descriptions. These 

building descriptions are converted into whole-building energy models using OpenStudio 

(Alliance for Sustainable Energy, LLC 2023), and the hourly energy consumption of each 

building by end-use is estimated using the EnergyPlus (NREL 2021) simulation engine coupled 

with local weather data. The result is more geographically, temporally, and end-use specific than 

the traditional surveys. 

ResStock and ComStock are complimentary to, not duplicative of, traditional surveys. In 

some aspects, such as the distributions of buildings by vintage, size, and type, they are much 

more granular than traditional surveys. However, because ResStock and ComStock are not 

surveys, they do not have standard error metrics to describe how well their estimates describe the 

stock or energy consumption. Instead, their estimates are compared to a range of other data 

sources to present users with an idea of how well they represent reality. For some building types, 

fuels, etc. the fit between other data and these models is close; for others it is further. The models 

are periodically refined to improve this fit or incorporate new data. Users of ResStock and 
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ComStock data must be aware of, and account for, differences between model results and known 

data which have higher certainty. One method of doing this is described in this paper. 

Deep Dive: Electrification Load Forecasting Tool Development   

The development of the load forecasting tool for an ISO included five major tasks: (1) 

Characterizing the building stock using ResStock and ComStock; (2) Developing electrification 

pathways; (3) Forecasting adoption of the pathways; (4) Modeling hourly demand impacts of the 

pathways; (5) Pulling the resulting outputs into a final load forecast. 

Building Stock Characterization  

The initial phase involved analyzing over 40,000 individual building models from the 

ResStock and ComStock data in the study region. The characteristics were aggregated into 

technologically similar space heating, space cooling, and water heating systems, resulting in 

approximately 24,500 building characteristic combinations for modeling electrification 

pathways. This allowed us to group similar buildings into adoption groups based on key building 

characteristics.  

Next, ResStock and ComStock model data were combined with 2020 ACS Census data 

for housing characteristics across the entire building stock in the study region. This information 

helped determine total square footage for each residential adoption group. To ensure 

comprehensive coverage, the resulting square footage was compared to EIA's CBECS and RECS 

data. Discrepancies were addressed by identifying 26 building types not modeled by NREL, 

leading to an underestimation of total square footage by 42%. To rectify this, the square footage 

associated with each unmodeled building type was added to the modeled building type with the 

closest energy use intensity (EUI).  

Following the aggregation of space and water heating building characteristic square 

footage data into the adoption groups, we determined the average EUI on a kWh per square foot 

basis for each end use affected by electrification pathways. These EUI metrics serve as inputs for 

return-on-investment calculations in Task 2. Recognizing an underestimation in regional gas 

consumption by NREL's End-Use Load Profiles Results and Calibration Uncertainty report 

(Wilson et al. 2022), we scaled natural gas usage by 3.5x to align ComStock’s estimate of with 

CBECs estimate of consumption for the same region. At the time of the study, the root causes of 

the underestimation were unknown, so we chose to scale space and water heating identically. 

Since this study was performed, the ComStock team has identified and accounted for some of the 

causes of this overestimation, which included things such as heating setpoints in warehouses, 

infiltration rates, and kitchen equipment power. Changes to the ComStock model are 

documented in release notes (NREL 2024a).   

For the industrial sector, because the focus of the load forecast was on building 

electrification, we only modeled parts of the building load (heating, cooling, fans, lighting, etc.) 

and not the industrial process loads in those industrial buildings. Given sparse data, we utilized 

ACS 2017 data for Manufacturing Industries in the region to identify establishments. This 

information, refined for specific NAICS codes also present in EIA's Manufacturing Energy 

Consumer Survey (MECS) dataset, allowed us to estimate total square footage for the industrial 

sector in the region. Results were then scaled for each state based on their regional share. We 
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modeled the industrial square footage as 10% medium office, 90% warehouse, based on the 

resemblance of warehouse facilities to manufacturing floors and the typical presence of adjoining 

office space in industrial facilities. The final output data for this task included total building 

square footage, average HVAC, and domestic hot water (DHW) and EUI, organized by building 

type, geographic location, and system characteristics. This data is integral for estimating energy 

impacts and return on investment from electrification measures in the subsequent electrification 

pathways development step, as well for the adoption modeling. 

Developing Electrification Pathways  

The first step in developing the electrification pathways was the identification of the key 

electrification technologies to analyze. After an extensive literature review, we selected the nine 

technologies shown in table 1.   

 

Table 1. Electrification Pathways 

Technology  Brief Synopsis  Reference Equipment 

Ductless Air Source Heat 

Pump  

Non-ducted split-system 

suitable for retrofits in 

smaller, non-ducted spaces. 

Can fully displace or partially 

supplement existing heating 

equipment.  

Mitsubishi M-Series – MSZ-

FS12NA & MUZ-FS12NAH 

(Mitsubishi 2021) 

Ducted Air Source Heat 

Pump  

Ducted split-system suitable 

for retrofits in small-scale 

ducted systems. Can fully 

displace or partially 

supplement existing heating 

equipment.  

Lennox Central Heat Pump 

(Lennox 2020) 

Variable Refrigerant Flow 

Systems (VRF)  

Ductless heat pumps with 

higher capacities and 

variable-speed compressors. 

Can provide simultaneous 

heating and cooling; assumed 

as air-source equipment for 

full displacements.  

Lack of direct performance 

data – used Mitsubishi M-

Series as basis  

Heat Pump Rooftop Units 

(RTU)  

Compact, packaged heat 

pumps installed on rooftops. 

Suitable for full or partial 

displacements based on 

existing heating systems.  

Rheem Renaissance Package 

Heat Pump (Rheem 2019) 
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Technology  Brief Synopsis  Reference Equipment 

Dual Fuel Heat Pump 

Rooftop Units  

Rooftop heat pump systems 

with integrated gas heating. 

Considered partial 

displacements due to some 

supplemental gas use.  

Same as above. 

Air-to-Water Heat Pumps  Air-source heat pumps 

producing chilled or heated 

water. Assumed suitable for 

hydronic systems as full 

displacements.  

Trane ACX (Trane 2022) 

Ground Source Heta Pumps 

(GSHP)  

Use the ground as a heat 

source/sink via an 

underground fluid loop. 

Adoption driven by corporate 

sustainability goals; modeled 

as part of certain pathways.  

We modeled a COP of 4.05 

based on Energy Star rated 

models (EnergyStar 2024) 

Heat Pump Water Heaters  Move heat to service hot 

water; recommended for 

modest water heating needs. 

Larger systems with storage 

for higher volume needs 

uncommon.  

We modeled a COP of 4.05 

based on Energy Star rated 

models (EnergyStar 2024) 

Heat Pump Water Heater 

with Booster  

Includes an electric booster 

heater for higher service 

water temperatures. Assumed 

for specific building types.  

We assumed a blend of 15% 

electric resistance usage with 

above heat pump. This 

resulted in an average COP of 

3.29.  
 

After identifying the technologies, we modeled each to estimate performance data and 

anticipated customer economics. As a first step in this modeling, we established capacity and 

COP curves tailored to each pathway. The COP of a heat pump diminishes with lower outdoor 

temperatures and higher operating capacities, creating a compound effect. Since COP determines 

both the electric impacts on the gird and the operating costs, both outdoor temperature and 

operating profile will have a significant impact on the grid impacts and cost-effectiveness of 

electrification. As a further complication, sizing practices significantly impact the capacity at 

which a heat pump operates. For instance, an oversized heat pump at 30 degrees Fahrenheit may 

operate below its rated capacity, while a smaller one for partial heating replacement may 

function at full load. To address these complexities, we established parameters to fully define 

COP for each technology pathway. These parameters include:  

• COP at various outdoor temperatures and capacities 

• Percentage of heating load at design temperature handled by the heat pump 

• Minimum operating temperature of the compressor 
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• Whether the pathway involves full or partial replacement of the existing fossil 

fuel heating system.  

We obtained these values from equipment submittal sheets for the reference equipment 

used in the pathway characterization, as well as assumptions about how heat pumps will 

typically be sized and operated. This information also determines whether any unhandled heat 

load is managed by electric resistance heat with a COP of 1.0 or by the existing fossil fuel 

system. 

Next, we created a Python function to compute the seasonal COP for a heat pump, 

considering electrification pathway, building type, and weather profile. The process involves 

determining the heating design temperature and maximum load around it, setting the heat pump 

sizing temperature, finding the maximum load near the sizing temperature, and sizing the heat 

pump based on load and the percentage of design load. The capacity and COP of a given 

temperature are determined by referencing all published performance data and linearly 

interpolating between known values. For example, if the temperature is 10 degrees and 

COP/capacity values are available for 5 degrees and 17 degrees, the 10-degree values are based 

on the linear interpolation between those two known values. Table 2 shows the parameters 

utilized for the Residential pathways. 

Table 2. Residential Pathway COP/Capacity Details 

Pathway COP Curve (°F, 
COP) 

Capacity Curve 
(°F, % of Max 
Cap) 

% of 
load at 
design 
Temp 

Minimum 
Operating 
Temp 

Full or 
Partial 

Ductless 

Heat 

Pump - 

Full 

(47, 6.05),  
(17, 3.515), 
(5, 2.42) 

(47, 1), 
(17, 1), 
(5, 1) 

100% -13 Full 

Ductless 

Heat 

Pump - 

Part 

(47, 4.93),  
(17, 2.47), 
(5, 2.01) 

(47, 1), 
(17, 0.79), 
(5, 0.63) 

60% 5 Partial 

Central 

Heat 

Pump - 

Full 

(47, 4.0),  
(17, 2.6), 
(5, 1.76) 

(47, 1), 
(17, 0.76), 
(5, 0.72) 

80% 5 Full 

Central 

Heat 

Pump - 

Part 

(47, 4.0),  
(17, 2.6), 
(5, 1.76) 

(47, 1), 
(17, 0.76), 
(5, 0.72) 

55% 5 Part 

Ground 

Source 

Heat 

Pump - 

Full 

4.05 COP at all 
temperatures 

100% at all 
temperatures 

100% -20 Full 
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Pathway COP Curve (°F, 
COP) 

Capacity Curve 
(°F, % of Max 
Cap) 

% of 
load at 
design 
Temp 

Minimum 
Operating 
Temp 

Full or 
Partial 

Air to 

Water HP 

– Full 

(47, 4.54), 
(17, 1.82), 
(5, 1.93) 

(47,1), 
(17, 0.8), 
(5, 0.71), 

80% -5 Full 

PTHP – 

Full 
(47, 3.91), 
(17, 2.49), 
(5, 1.98) 

(47, 1), 
(17, 0.65), 
(5, 0.58) 

90% 5 Full 

PTHP - 

Part 
(47, 3.91), 
(17, 2.49), 
(5, 1.98) 

(47, 1), 
(17, 0.65), 
(5, 0.58) 

55% 5 Full 

 

After electrification technologies were identified and modeled, they had to be matched to 

baseline conditions based on feasibility to determine what upgrades were valid for what baseline 

conditions. Feasible electrification pathways are dependent on multiple building characteristics 

such as building type, operating schedule, and existing space heating and water heating systems. 

For the purposes of this analysis, we have simplified the space heating analysis to consider only 

the existing HVAC systems by state and building type, as modeled in ResStock and ComStock, 

to determine the appropriate pathway. This assumes that the existing systems were designed and 

installed to satisfy application requirements for zoning, thermal loads, and other considerations, 

so if the selected electrification equipment can effectively replace the functionality of the 

existing equipment, the consideration of other issues will be inherently addressed. Up to three 

pathways were modeled for each baseline system type to reflect the potential variability in the 

electrification solutions implemented for a given baseline system. The resulting competition 

among the different pathways is described in the adoption modeling methodology.  

Once electrification pathways and their mapping to baseline conditions was determined, a 

set of key parameters were established for each pathway to create accurate estimations of 

operating economics and return on investment for use in the adoption modeling. These 

parameters were the type of displacement, the amount of load served, the heating COP and 

temperature pairs, installed capacity costs, fossil fuel heating efficiency, implementation barriers, 

incentive support, and 2022 penetrations. Table 3 below gives an overview of what each of these 

parameters represent. 

   

Table 3. Key Pathway Parameters 

Parameter   Explanation  

Type of Displacement  Each electrification technology was 

characterized as a full displacement of the 

existing fossil fuel heating loads (“Full”), a 

partial displacement of existing fossil fuel 

heating loads (“Partial”), or both  
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Parameter   Explanation  

Heat Pump Load/Supplemental Load  A quantification of the portion of the thermal 

loads served by either the heat pump 

(inclusive of electric resistance supplemental 

heat, if applicable) or fossil fuel-fired 

supplemental heat (i.e., the existing heating 

system or the gas-fired section of a dual fuel 

heat pump)  

Heating COP and Temperature Pairs  COP/Temperature pairs taken from reference 

equipment submittal sheet. Typically, 47f & 

17f, with some units providing additional data 

points such as 5f or -13f. This paired with a 

simple bin analysis of typical weather data 

results in annual average kWh per MMBtu 

heat delivered.  

Installed Capacity Cost  Installed capital costs, inclusive of equipment 

costs and installation labor, were estimated on 

a per-ft2 basis for space heating equipment 

and on a per-kBtu/h output for water heating 

equipment for C&I and on a per-housing unit 

basis for residential. Given the range in costs 

from the literature, we attempted to pull from 

a limited number of consistent sources for 

multiple categories of equipment costs where 

possible.  

Fussil-Fuel Fired Supplemental Heating 

Efficiency  

An efficiency of 80% was assumed for all 

fossil-fuel fired supplemental heating 

(inclusive of new and existing equipment)  

Implementation Barriers  Barriers to implementation were created for 

each of the pathway/building type 

combinations to represent the technical 

difficulty of the installation of the pathway 

relative to current conditions These values 

were based on professional judgement of 

severity of retrofit needed. 

Incentive Support  Incentives were determined for each state by 

looking at both current/planned offerings 

through state/utility energy efficiency 

programs and at federal incentives such as the 

those through the Inflation Reduction Act. 

Incentives were assumed to not stack between 

state and federal options, excepting tax 

incentives, so the higher of the two was 

chosen.  
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Parameter   Explanation  

2022 Penetrations  Initial penetrations of heat pumps systems, 

required as an input to the adoption modeling, 

were estimated by reviewing baseline study 

data and leveraging ResStock & ComStock 

metadata.  

  

Additional parameters were needed for the baseline conditions to aid in developing 

adoption figures for retrofit applications. These included an assumed failure condition that could 

trigger a replacement event, installed capital costs, and a deferred replacement credit for retrofit 

applications. Table 4 below has a summary of each of these parameters.   

 

Table 4. Key Baseline Parameters 

Parameter   Explanation  

Assumed Replace-on-Failure Trigger 

Condition  

We assumed that failure of either the existing 

heating or cooling equipment (if not a single 

package) will be the triggering event spurring 

a replacement with a heat pump system.  

Installed Capital Costs  Installed capital costs for baseline systems 

were estimated on a per-square-foot basis for 

space heating equipment and on a per-kBtu/h 

output for water heating equipment for C&I 

and on a per housing unit basis for residential.  

Deferred Replacement Credit  For the early retirement retrofit market, we 

assume a present value “credit” to reflect the 

value of the equipment cost a participant 

would have otherwise incurred had they not 

replaced their baseline system before the end 

of its useful life.   

  

Once all parameters were developed, retail rates for fuels and electricity were collected 

for each state in the study region. Rates were taken from the most recent EIA statewide average 

at the time from the State Energy Data System. These rates, coupled with the above parameters 

were used to create return on investment metrics for use in the adoption forecast process. For 

both the retrofit and market driven pathways, the return on investment (ROI) calculation is 

simply the annual energy cost savings/impact divided by the net installed cost to the consumer.   

Adoption Forecasting  

The adoption forecasting methodology relies on the well-established Bass Diffusion 

Model, which was introduced in 1969 and has been widely employed for estimating the adoption 

patterns of various products (Bass 1969). This model employs a differential equation to depict 

cumulative market adoption as an "S" curve, encompassing a phase of slow initial adoption, a 

subsequent period of rapid market share increase, and a final phase of leveling off. The 
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distinctive shape and speed of this curve are primarily determined by two key factors: the 

coefficient of innovation (P) and the coefficient of imitation (Q). The former influences the 

speed of adoption in the early stages after product release, while the latter describes how quickly 

a product is adopted through mechanisms such as word-of-mouth. 

In adapting the Bass Diffusion Model for electrification measures, the maximum 

adoption level is adjusted based on assigned barrier levels, specifically focusing on technical 

challenges independent of financial considerations. The maximum adoption level is then derated 

by the ROI of the electrification pathway. State-level policies are considered as significant 

influencers of the coefficient of imitation, reflecting the pace at which a given electrification 

technology transitions from early adoption by innovators to widespread use.  

To account for uncertainties surrounding changes in ROI and policy support over the 

study horizon until 2050, a Monte Carlo Simulation is employed. This simulation allows for a 

probabilistic forecast of variations in these key parameters, providing a more robust 

understanding of potential scenarios. The core variables of the forecasting model, in this case 

ROI, policy level, and barrier, are then correlated with the parameters of the Bass Diffusion 

Model. 

The adoption forecast is further nuanced by considering the competitive landscape among 

multiple electrification technologies. In cases where mutually exclusive technologies are vying 

for adoption within a specific building segment, the assumption is made that the maximum 

adoption level is determined by the pathway with the highest ROI. The actual adoption 

percentages for each pathway are then scaled based on their respective shares in the Monte Carlo 

Simulation. Figure 1 is the resulting incremental adoption of residential heat pumps by building 

segment. Notably it shows a large acceleration in annual adoption out to the mid-2030s after 

which new conversions begin to slow down once the bulk of the housing stock has already been 

converted.  

 

Figure 1. Residential electrification adoption by building segment. 
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Hourly Demand Modeling  

In order facilitate estimates of grid impact, we created a set of regressions that would 

predict electric impact based on electrification pathway, building type, outdoor air temperature, 

hour of day, and weekday/weekend.  

As a first step, we created aggregate weather data, using the weighted average of county-

level weather files used by individual building models in ResStock and ComStock. Separate 

weather files are generated by building type and sector, factoring in the varying weightings in 

ResStock and ComStock. We paired this weather data with the end use profiles from the building 

stock modeling, allowing us to determine heating load at each hour and outdoor air temperature 

(assuming an 80% efficient existing heating system). Also, as discussed above, we applied a 

factor to increase heating load estimates to account for the underestimation in ComStock. 

Next, for each hour in the year, the function extrapolates the COP of the heat pump at the 

given temperature based on equipment submittal sheets and the performance curves described 

above. If the temperature is below the minimum operating temperature, the heating load is 

addressed by the existing fossil fuel system for partial replacement or electric resistance heat for 

full replacement (note that minimum operating temperature was selected based on manufacturer 

data, and for some electrification pathways was low enough that supplemental heat was not 

needed). If the heating load exceeds the heat pump capacity, a mix of heat pump and backup heat 

is used. 

Figure 2 is an illustrative graph that shows relative heating load on the y-axis (1.0 

represents the maximum hourly load) and outdoor temperatures on the x-axis. The red vertical 

line indicates the minimum operating temperature, and the light red diagonal line depicts 

capacity increase as the temperature rises. Green dots signify hours with only the heat pump, 

pink dots denote hours with only electric resistance heat, and an orange dot represents hours with 

both electric resistance and heat pump heat. 

 

  
Figure 2. Illustrative heat pump hourly modeling results. 

The electric load by building type, determined in the initial step, is converted to electric 

impact based on the temperature and heating system operation. During hours with green dots, the 

COP is determined using the heat pump alone. In hours with orange dots, a weighted average of 

© 2024 ACEEE Summer Study on Energy Efficiency in Buildings



 

 

the heat pump COP and electric resistance backup is used. Hours with red dots employ a COP of 

1.0, representing electric resistance heat. For partial heating applications, there is no electric 

impact during hours with red dots, while hours with orange dots use the COP from the heat pump 

but on a portion of the total load. 

To model electric impacts based on temperature and building type, a regression approach 

is adopted. The heating load from the previous step is converted to electric impacts using COP 

curves. The 8760 hourly data is categorized into day types (weekday/weekend) and hours. 

Scatter plots are generated for each day type and hour, plotting heating load against temperature. 

Regression equations are developed to determine electric impact as a function of pathway, 

building type, day type, and hour. 

For full replacements, an exponential formula is used as the best fit regression line. 

However, for extremely low temperatures, where the exponential regression resulted in 

unreasonably high electric impacts, a maximum electric draw is defined at the 99.5% percentile 

load. This adjustment addresses the curve's steepness at very low temperatures, ensuring the 

electric draw does not exceed practical limits. 

Final Forecast and Results 

The final demand forecast is crafted through the amalgamation of the adoption forecast 

and the intricate details derived from hourly demand modeling. This forecast is not only 

comprehensive but also operates at both geographic and temporal resolutions, facilitating a 

nuanced and detailed analysis. Its adaptability stands out, as the analysis can be easily refreshed 

over time with the incorporation of updated heat pump characterizations, current adoption 

statistics, or refined demand modeling approaches, ensuring that the forecast remains accurate 

and reflective of the latest developments. Furthermore, its easy integration with existing demand 

forecast processes empowers it to offer valuable insights into the regional implications of 

building electrification.  
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The results of our analysis showed a very significant increase in electric demand, during 

cold winter days. This demand increase would result in a dual peaking system instead of summer 

peaking by the mid-2030s. Figure 3 is an example output, showing residential heating 

electrification driven demand in the year 2035. It is differentiated by full and partial 

displacement strategies, with extreme spikes from cold weather events. In this case the 

instantaneous demand increase over a baseline scenario of no heating electrification peaks at 

over 7 GW.  

Figure 3. Residential electrification demand impacts modeled in 2035. 

Discussion and Improvements 

This methodology proved to be a powerful and flexible methodology for exploring 

various sensitivities in expended load growth due to heating electrification. However, given the 

complexity of the inputs and the detailed approach to modeling, many simplifications needed to 

be made and there is a lot of room for future improvements to the methodology. This section of 

the paper will highlight a few higher priority areas for improvement.  

. As described, the methodology was designed to calculate impacts for each hour, 

building type, and weekday/weekend. However, this level of granularity severely limited the 

number of temperature samples for each hour/day combination curve. A fix to this would be to 

analyze each building model in ResStock/ComStock separately, instead of creating aggregated 

sets. However, this was computationally prohibitive at the time. Another solution would be to 

aggregate more building types or hours. However, this would decrease the impact of building 

occupancy schedules on the resulting impacts.  

A second issue in the forecast is the lack of ability for a partial displacement to later 

convert to a full displacement. To address this, a more robust adoption model would need to be 

considered, with a significantly more complex market interaction scheme to account for the 

various competitive pressures.  
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A third area for improvement of the model would be to change the underlying 

characteristics of the heating electrification pathways over time. Improvements in efficiencies 

and decreasing capital costs could greatly alter the adoption and demand forecasts, however 

assuming improvements for the entire study horizon quickly becomes speculative. 

Finally, the analysis involved significant assumptions on the sizing practices of heat 

pump installation and the COP performance curves. These parameters can be updated as more 

studies are performed looking at metered heat pump performance and typical sizing practices. 

The parameters in the adoption can likewise be updated, as more is understood about past 

adoption of heat pumps for heating. 

Other Potential Use Cases 

The additional analytical resolution provided by building stock models, both 

geographically and in building level analysis, presents an opportunity to enhance utility centric 

analyses. The demand forecast for electrification as discussed above is a clear example of how 

the building stock model provides a higher level of detail that could prove valuable in long-term 

planning efforts. This section of the paper will briefly speculate on where this style of analysis 

might provide additional value over standard industry practices.  

Sensitivity Analyses for Decarbonization Programs 

Decarbonization programs represent a fundamental shift in purpose and design from the 

traditional utility run energy efficiency program. Incentive strategies and their impact on 

installation practices can have drastic impacts on installed capacity and resulting grid impacts. 

For example, an incentive structure that is based on capacity may result in larger heat pumps 

than an incentive structure that is based on the number of compressors. The methodology above 

could be used to estimate the grid and budget impacts of one incentive strategy vs. another. This 

could similarly apply to general sizing strategies – what would be the difference in grid and 

financial impacts of sizing a heat pump at 100% of the design load, vs. 90% and using electric 

resistance back up. This could give greater insight into how program strategies and contractor 

standard practice might impact grid operations.  

Potential Studies 

Potential studies stand to gain a great deal of information and clarity from the inclusion 

of geographically oriented building stock models. While contemporary potential studies give 

face service to geographic resolution by focusing on utility or state service territories, bringing in 

more granular data can add significant value to potential studies, particularly for utilizes with 

diverse and distinct operating territories.  

Baseline studies can be costly and difficult to obtain, and building stock models, if 

appropriately supported, can enable underfunded jurisdictions to utilize the more granular data a 

baseline study affords. Using regional comparisons, updates to building stock models based on a 

jurisdiction’s evaluation efforts can support another, greatly helping lesser funded and supported 

programs.  
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