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ABSTRACT 

 Full electrification of space and water heating is critical to decarbonizing the economy. 

This transition, now underway and accelerating, will have profound impacts on customer energy 

costs, grid resiliency, and the cost of serving load. These impacts may be positive or negative 

depending on how electrification is executed. Ensuring positive outcomes demands an accurate 

understanding of present-day energy use patterns. For instance, the effects of deploying heat 

pumps depend on the prevalence not only of natural gas heating but also of air conditioning, 

since customers who lack AC will gain it, while customers with existing AC may see improved 

efficiency. High geographic resolution is also important for understanding distribution system 

impacts and for ensuring equitable customer outcomes. Today’s energy-use characterizations 

rely primarily on survey results with low geographical resolution and little ground-truthing. In 

this study, we leverage a comprehensive warehouse of customer meter data compiled by the 

California Energy Commission, applying open-source methods from the OpenEEmeter to 

characterize residential energy consumption in detail. The result is an accurate, data-driven 

measurement of the prevalence, by ZIP code, of air conditioning, gas and electric space heating, 

and gas water heating. We also produce detailed distributions of space conditioning energy 

consumption, and we draw inferences about the prevalence of other fuels such as wood and 

propane. Putting meter data to work in this way on an ongoing basis will enable effective 

forecasting and tracking of electrification impacts and facilitate nimble course-correction on the 

way to affordable decarbonization. 

Introduction 

Rapid electrification of legacy fossil end uses to mitigate climate change is poised to spur 

dramatic near-term impacts for grid management and planning, with substantial load growth 

expected, along with drastic changes in the timing and seasonality of peak electricity demand 

(Mai et al. 2018, Kenney et al, 2021, Gerke et al., 2022). Electrifying natural gas space heating, 

for instance, will create significant new winter morning peaks in regions with high saturation of 

gas heating. Further, since most heating electrification is expected primarily to use heat pump 

technology, which also provides space cooling service, the conversion may significantly impact 

existing summer peak demand, by adding new space cooling load in some cases, while 

potentially reducing load through improved efficiency where it already exists.  

Accurately forecasting the expected scale and timing of these changes is critical for cost-

effective expansion of electricity generation capacity and transmission and distribution 

infrastructure. Planning for electrification-driven power system upgrades (or gas system 

retirements) requires a detailed understanding of the present-day geographic distribution of 

relevant gas and electric end-uses. For instance, a distribution circuit with a high saturation of 

gas space heating, and low AC saturation, may require significant capacity upgrades to 

 
1 Current affiliation: Moxion Power 
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accommodate new electric space heating and cooling load; whereas a circuit with high 

penetration of electric resistance space heating and AC may see overall reductions in peak 

demand after conversion to heat pump technology. Future generation capacity requirements will 

also be impacted by changes in the timing and seasonality of peak system loads, which will 

depend on the underlying geographic distribution of electrification impacts. A concrete example 

is the California Energy Commission’s (CEC) load forecasting tool for electrification impacts, 

the Fuel Substitution Scenario Analysis Tool (FSSAT) (Sathe et al. 2020), which depends on a 

detailed geographical understanding of present-day AC saturation in California. 

Historically, characterizing the mix of end uses in the customer population has depended 

mainly on customer surveys conducted at national (e.g., EIA 2022) or regional (e.g., Palmgren et 

al. 2021, NEEA 2019) scales. Surveys provide important information on the saturations and 

reported usage of typical energy end-uses in buildings, but they are ultimately limited by their 

sample sizes, response rates and respondent recollection. In particular, sampling variance makes 

it difficult to draw conclusions about end-use saturations on fine geographic scales. This limits 

the usefulness of these surveys for forecasting demand and planning grid upgrades, especially on 

the distribution-system level or in transmission-constrained pockets of the grid.  

The emergence of advanced metering infrastructure (AMI) with daily, hourly, or even 

finer time resolution provides an alternative pathway to assessing energy-consumption patterns 

and end-use penetrations. Weather normalization and other modeling approaches applied to AMI 

data enable consumption from different end-use categories to be disaggregated from whole-

building data, which can enable data-driven understanding of consumption patterns across the 

population (e.g., Recurve 2022). Barriers to unlocking these insights for policymakers and 

utilities include data accessibility, data scale, and computing power. Meter data is sensitive 

information requiring strong data security protocols, and applying modeling algorithms to 

hundreds of thousands or millions of customers rapidly outstrips the capabilities of consumer-

grade computing infrastructure.  

In this study, we estimated saturations of residential air conditioning, electric and gas 

space heating, and gas water heating in the service territory of Pacific Gas and Electric Company 

(PG&E), for a sample of some 3.6 million customers, based on a unique whole-population AMI 

dataset compiled by the CEC. We leveraged Recurve’s secure, massively parallel computing 

platform to run the open-source OpenEEmeter software2 on the dataset, which enabled 

disaggregation of temperature-dependent consumption for each customer. By analyzing the 

resulting population-level distributions, we identified threshold consumption criteria that 

appeared to indicate the presence of primary heating or cooling. We also developed criteria that 

allowed us to infer the presence of gas water heating. Applying these criteria across the 

population yielded a detailed and highly granular estimate of the penetration of these end uses 

within the population, providing a well-measured baseline against which the impacts of space 

and water heating electrification can be forecasted and measured. 

It is important to note certain boundaries and limitations of this study. Perhaps most 

importantly, our criteria for identifying the presence of different end uses have not been 

validated against detailed site-level audits (although they compare favorably to existing survey 

results). Further, the present study is limited to residential customers of a single utility in 

Northern California. Although PG&E’s service territory covers a very broad range of climates, 

the details of our end-use inference strategy may not be well tuned for use in other utility service 

 
2 https://lfenergy.org/projects/openeemeter/ 
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territories or for non-residential customers. Further efforts in any of these areas would refine and 

improve the accuracy of the methods we demonstrate here. In the remainder of this paper, we 

first describe the CEC dataset and the approach to disaggregating temperature-dependent load. 

We then describe the distributions of disaggregated loads in the population and our approach to 

inferring primary heating and cooling fuels. Finally, we illustrate the power of these estimates for 

population-level analysis, presenting example population-level statistics on end-use penetration 

for residential customers by California building climate zone and by ZIP code.  

Methodology 

Approach to Estimating Heating and Cooling Loads 

To disaggregate estimated customer space heating and space cooling loads we applied the 

OpenEEmeter version 3.03 to each customer’s gas and electricity consumption data. 

OpenEEmeter 3.0, an open-source project of the Linux Foundation Energy, is the software 

implementation of the CalTRACK 2.0 modeling framework,4 which specifies an approach to 

performing weather-normalized modeling of customer energy consumption data. The framework 

was developed through an open, stakeholder-driven process with participants from across the 

demand-side management industry. OpenEEmeter consists of two separate models—a daily 

model and an hourly model—that are used to model data of different frequency. The daily model 

is a change-point temperature regression model that models the response of a customer’s daily 

electricity or gas consumption to the average daily outdoor air temperature (at a nearby weather 

station) using piecewise linear regression in three different temperature regimes. Energy 

consumption is assumed to decrease with temperature below the heating balance-point 

temperature, increase with temperature above the cooling balance point, and be insensitive to 

temperature between the two balance points. This structure is illustrated in Figure 1. The balance 

points and the slopes of the heating and cooling response are parameters of the model that are 

optimized by the model fitting function. The algorithm also considers models with only a heating 

or cooling balance point, or neither, to account for buildings without heating or cooling from the 

fuel being analyzed. The hourly model fits energy consumption as a function of time of week 

and temperature, using piecewise linear regression for each hour of the week in several fixed 

temperature bins. It also performs a preliminary step to infer occupied and unoccupied hours and 

fits separate models for each occupancy state. 

The daily model enables disaggregation of temperature-dependent usage from the 

customer’s total energy consumption. As illustrated in Figure 1, the model identifies a flat base 

consumption between the two balance points, with consumption increasing as the temperature 

moves away from the balance points in either direction. Consumption above the base level can 

thus be identified as space heating load below the heating balance point and as space cooling 

load above the cooling balance point. Because of the structure of the hourly model, it is less 

straightforward to identify heating and cooling consumption in its outputs. Thus, in the rest of 

this study, we will rely on heating and cooling loads disaggregated using the daily model to 

identify customers with heating and cooling.  We applied the daily model to the hourly electricity 

AMI data by aggregating the hourly data up to a daily level, and we applied it to the monthly gas 

data by dividing the monthly billing consumption by the number of days in each billing period to 

 
3 This version of OpenEEMeter, the latest at the time of analysis, has since been superseded by OpenEEMeter 4.0. 
4 https://docs.caltrack.org/en/latest/ 

© 2024 ACEEE Summer Study on Energy Efficiency in Buildings



yield approximate daily gas consumption, consistent with the published CalTRACK methods. 

The model fits resulted in estimated electric heating and cooling consumption, and estimated gas 

heating consumption, for each of the 3.6 million residential sites selected for analysis.  

 

 

Figure 1. A schematic diagram of the piecewise change-point regression model 

used for daily temperature normalization modeling in OpenEEmeter 3.0. 

For comparison purposes, we also computed each site’s aggregate electricity and gas 

consumption over the full year and in the summer (June-September), winter (November-

February) and shoulder (October and March-May) seasons. For customers with rooftop PV, we 

compute aggregate net electricity consumption (i.e., the net total of all imports and exports) and 

aggregate delivered energy consumption (i.e., the total of imports only). The delivered value is 

more practically useful as a basis for comparison, as it cannot be negative and is typically well 

above zero, providing a better (if imperfect) representation of the customer’s behind-the-meter 

consumption. For customers without rooftop PV, net and delivered consumption are identical. 

Dataset 

The dataset used in this study consists of hourly electricity and monthly natural gas and  

consumption data for all residential customers in PG&E service territory, covering a period of 

one year for each customer, starting in October of 2020 (exact start dates may vary according to 

the specifics of customers’ billing cycles). In addition, the dataset contains metadata describing 

certain characteristics of each customer and property, such as geographical information, presence 

of rooftop photovoltaic (PV) systems, gas and electric rate codes, and enrollment in low-income 

energy rate programs.   

We selected a subset of the population, consisting of all residential customers who: 

 

● Receive electricity distribution service from PG&E  

● Do not fall within the service territory of a different gas utility  

● Have sufficient energy consumption, defined as at least 500 kWh over the analysis year, 

to infer that the household was plausibly occupied for part of the year 
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● Have sufficient data for modeling and can be accurately modeled by OpenEEmeter5 over 

the analysis year 

 

This selection includes customers of California Community Choice Aggregation (CCA) 

electricity providers in PG&E service territory, since PG&E delivers electricity to these 

customers. It also includes PG&E all-electric customers (i.e., customers without gas service) in 

the specified territory. It excludes the following customer categories: 

 

● PG&E gas customers who receive electricity from a different utility  

● Certain PG&E customers who are in SoCalGas service territory 

● Customer sites that were unoccupied or minimally occupied during the analysis year 

● New construction and sites with customer move-out or move-in occurring during the 

analysis year, since these customers will not have sufficient data for modeling 

● Customers who experienced lengthy power shutoffs during the analysis year 

● Any other sites that have insufficient gas or electricity data in the analysis year to support 

modeling with OpenEEmeter 

 

The resulting dataset includes 3.6 million households in PG&E service territory. With 

this selection, we proceeded to estimate the heating and cooling loads for each customer.  

Approach to Estimating End-use Saturations 

Figure 2 shows the distribution of estimated cooling consumption, as a percentage of 

each customer’s delivered summer electricity consumption, for customers in each California 

Title 24 climate zone covered by the analyzed population.6 As shown in Figure 2, each 

distribution includes some customers with very low (but nonzero) cooling consumption. This 

may indicate temperature-dependent consumption other than direct expansion air conditioning, 

such as use of fans or evaporative cooling, or it may simply reflect noise in the model outputs. 

Inspecting the distributions in Figure 2 suggests the presence of two distinct populations, with 

summer cooling fractions falling below and above 20%, respectively. Based on this observation, 

we assumed that customers were likely to use air conditioning as their primary source of space 

cooling if their cooling usage exceeded 20% of their delivered summer electricity usage.  

A drawback of this assumption is that some customers with very large overall 

consumption (e.g., customers with electric vehicles, pools, and spas) might have significant AC 

usage that nevertheless represents less than 20% of their summertime consumption. Such 

customers would be miscategorized by a simple 20% threshold. To mitigate this effect, we also 

set a threshold in absolute annual cooling consumption of 500 kWh, above which customers 

were inferred to use air conditioning as a primary source of space cooling. Figure 3 is a scatter 

plot of summer cooling percentage vs. total annual cooling consumption. There is a strong 

correlation between the two parameters, but with significant scatter. A simple threshold in either 

dimension would exclude customers who appear to have significant cooling according to the 

 
5 Specifically, OpenEEmeter 3.0 requires 7446 hours of data for the hourly model, and 328 days of data for the daily 

model, and we required that the model fitted to the data have a coefficient of variation of the root mean squared 

error (CVRMSE) no greater than 1.0. 
6 Not shown in Figure 2 are customers for whom the best model included no cooling balance point, whose estimated 

cooling load is exactly zero. Such customers make up about 18% of the analyzed population. 
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other metric but have scattered above or below the main trendline. Applying both thresholds, as 

shown in Figure 3, allows us to capture a more complete selection.  

  

Figure 2. Left: Distributions of customer cooling consumption as a percentage of each customer’s total summer 

electricity consumption, by California Title 24 climate zone. Right: A map of the Title 24 climate zones. The 

population analyzed in this study has customers in climate zones 1, 2, 3, 4, 11,12, 13, and 16. 

 

Figure 3. Scatter plot showing customers’ cooling load as a fraction of their summer 

delivered electricity, versus absolute annual cooling consumption, on a log-log scale. 

The dashed lines denote the thresholds used to identify significant air conditioning 

usage in this study, and the colors indicate the selection. 

We took a similar approach to inferring space heating saturations. For both electricity and 

gas consumption, we inspected the distribution of heating consumption (as estimated using 

OpenEEmeter) as a percentage of total delivered wintertime usage, and we selected thresholds 

that appeared likely to indicate the use of each fuel as a primary heating source. We additionally 

defined thresholds in absolute heating consumption to account for customers with unusually 
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large non-temperature-dependent wintertime consumption. Table 1 summarizes the various 

thresholds used to identify primary cooling and heating end uses in this study. 

While examining customer usage distributions, we also found a method to draw 

inferences regarding water heating usage. Figure 4 shows the distribution of estimated gas 

heating consumption across the entire analyzed population, as a percentage of each customer’s 

annual gas consumption. A small but notable population exists around 100%7 of total gas usage 

for space heating. Because water heating is also a large end use, these customers can safely be 

inferred not to have gas water heating. Therefore, we can conclude that most other customers in 

this population have gas water heating, so we set a maximum threshold of 95% in this parameter, 

below which customers are inferred to have gas water heating. A possible exception is customers 

who have very low annual gas consumption, inadequate for water heating. To exclude these 

customers, we set a minimum threshold at 50 Therms of annual gas consumption to infer the 

presence of gas water heating.8 These thresholds are also summarized in Table 1. They are 

applied slightly differently than the space heating thresholds above, in that both thresholds must 

be met to infer the presence of gas water heating.9  

 

Figure 4. Distribution of gas space heating consumption as a percentage of each customer's total 

annual heating consumption. A notable population uses approximately 100% of their gas 

consumption for space heating, which implies that these customers do not have gas water heating. 

With these thresholds in place, we can estimate the saturations of primary space heating 

and cooling end uses in different regions. First, we grouped customers by region, then we 

computed the fraction of customers who were inferred to have each end use. In the case of 

electric space heating, we found that customers with rooftop PV had estimated electric heating 

 
7 The distribution extends to above 100% in part because the curve has been smoothed but more substantively 

because the estimated heating consumption is the output of a regression model, which will naturally over or under-
estimate consumption to some degree. 
8 This threshold is intended to represent a conservative bare minimum amount of gas consumption by a gas water 

heater. According to investigation of EnergyGuide data, an ultra-efficient condensing tankless water heater uses 

approximately 180 Therms annually, so this threshold would represent a seasonally occupied site with very efficient 

gas water heating. 
9 Because of the greater diversity of electrical end uses, there is no corresponding set of thresholds that can be used 

to infer the presence of electric water heating. The inverse of the gas water heating saturation can be used as a 

reasonable estimate (though it will be a slight overestimate since some customers use propane for water heating). 
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consumption patterns substantially different from the rest of the population. This was driven by a 

shortcoming of temperature regression for customers with PV: the correlation between 

temperature and solar irradiance can be incorrectly interpreted as heating load by the model. For 

this reason, we excluded customers with PV when estimating the saturation of electric space 

heating. Our conclusions regarding this end use rest on the assumption that PV customers do not 

have a materially different saturation of electric space heating from other customers. 

Table 1. Thresholds used to infer primary heating and cooling end uses in this study. 

End use Percentage threshold 
Threshold 

combination logic 

Consumption 

threshold 

Air conditioning 

>20% of summer 

delivered electricity 

for cooling 

OR 

>500 kWh of cooling 

electricity 

consumption 

Electric space heating 

>40% of winter 

delivered electricity 

for heating 

OR 

>1000 kWh of heating 

electricity 

consumption 

Gas space heating 

>50% of winter 

delivered gas for 

heating 

OR 

>100 Therms of 

heating gas 

consumption 

Gas water heating 

<95% of annual 

delivered gas for 

heating 

AND 

>95 Therms of total 

annual gas 

consumption 

Findings 

Table 2 presents the population-level end use saturations estimated in this study using 

OpenEEmeter (denoted OEEM in the table), including fraction of households with nonzero 

heating or cooling consumption detected by the model, as well as the fractions that pass the 

significance thresholds in Table 1. For comparison, Table 2 also presents saturations reported for 

PG&E service territory in the CEC’s Residential Appliance Saturation Study (RASS) (Palmgren 

et al. 2019), including estimates of both primary and auxiliary space heating and cooling loads.  

Table 2. Saturations of heating and cooling end uses considered in this study, as detected by 

OpenEEmeter (OEEM) modeling and the significance thresholds described above, and as 

estimated in the RASS study for primary end-use fuels and primary plus auxiliary end-use fuels. 

 

End use 
 

OEEM 

detected 

OEEM + 

significance 

RASS* 

primary 

RASS* primary 

+ auxiliary 

Space cooling  82% 51% 51%** 74%** 

Electric space heating†  83% 22% 19% 28% 

Gas space heating‡  97% 83% 77% 79% 

Gas water heating‡  NA 90% 89% NA 

* RASS values as reported for PG&E service territory 
** Here, RASS “primary” space cooling includes central AC; auxiliary space cooling includes room AC and 

evaporative cooling. 
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† OEEM-detected saturations for electric space heating are computed as a function of homes without rooftop PV. 
‡ Gas space heating and water heating values are calculated as a percentage of homes with gas meters. 

Notably, the detections of “significant” end uses by OEEM match very closely with the 

estimates of primary heating and cooling fuels from RASS. However, the OpenEEmeter 

detections of nonzero heating and cooling consumption are considerably higher than the RASS 

estimates of primary-plus-auxiliary end-uses. The discrepancy is especially large for electric 

space heating, where OpenEEmeter finds that 83% of customers have nonzero detected 

consumption, while RASS estimates that only 28% of customers use any form of electric 

heating. Although it is possible that some of the OpenEEmeter detections with very low 

consumption reflect noise in the modeling outputs, the size of the discrepancy suggests that 

RASS may also be missing a significant amount of auxiliary electric heating consumption. This 

may imply underreporting of portable electric space heater usage by survey respondents. 

Results by California Building Climate Zone 

OpenEEmeter allows us to detect heating and cooling end uses on the household level, so 

we can estimate saturations at any level of geographical granularity that is supported by the 

metadata available in the CEC database. We can also look at different combinations of end-uses. 

In this section, we characterize various end-use saturations by climate zone.   

Figure 5 shows the saturations of detected and significant space cooling consumption in 

each climate zone. Not surprisingly, cooler coastal climate zones (e.g. 1 and 3) have very few 

customers with significant cooling load, whereas in hotter inland zones (e.g. 11 and 13) 

significant cooling is nearly universal. Notably, in nearly all climate zones, the majority of 

customers have nonzero cooling load, suggesting use of fans or some room air conditioning in 

the cooler climate zones. The exception is climate zone 1, where 70% of customers have no 

cooling load at all, consistent with the especially cool climate along California’s north coast. 

 

 

 

Figure 5. Space cooling saturations by California climate zone, as detected by OpenEEmeter 

modeling. Saturations are shown for customers who have any cooling load detected and for 

customers whose cooling load passes the significance thresholds defined for this study. 

Figure 6 compares the fraction of customers with detected gas space and water heating to 
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the fraction of customers with gas meters, by climate zone. There is considerable variation across 

the state in all three saturations, but notably the heating and water heating saturations are very 

close to the overall fraction of households with gas meters in each climate zone. The key finding 

from this figure is that, although access to gas service varies drastically by region, when 

customers have gas service, they almost universally use it for space and water heating.  

 

 

Figure 6. Estimated saturations of gas meters, gas heating, and gas water heating, by climate zone. 

 Figures 7 and 8 compare the fractions of households with detected gas and electric heat 

to the fractions with significant consumption from those end uses, and they also consider the 

fraction of customers without space cooling in each group. A few interesting patterns emerge. 

First, when households have detected gas heating, that usage is nearly always significant. For 

electric heating, the opposite is true: a large majority of households have at least some electric 

heating, but a small minority use significant amounts. This suggests that there is very little use of 

gas, but widespread use of electricity, for supplemental heating in homes.  

 

 

Figure 7. Fractions of households with detected gas heat, significant gas heat, and detected gas heat with 

no significant cooling consumption, by climate zone. 
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It is also interesting to look at the fractions of customers who do not have significant 

cooling load. Households with any gas heating and those with primary electric heating are 

potentially good targets for conversion to heat pumps, but those who do not currently have air 

conditioning will gain it after the switch, which may add significant summer peak load for the 

utility. Figures 7 and 8 indicate that customers in the hot climate zones 11,12, and 13 are unlikely 

to add significant new cooling when converting to heat pumps (in fact, they may reduce their 

cooling load via efficiency gains) but those in cooler climates have the potential to add 

significantly to summer peak demand.10 Understanding this dynamic is critical to planning for 

generation and grid capacity expansion in the context of rapid electrification. 

 

 

Figure 8. Fractions of households with detected and with significant electric heat, and with significant 

electric heat without cooling, by climate zone. 

Finally, Figure 9 presents the fraction of households who have significant heating 

consumption from both gas and electricity. Such customers may be good candidates for a whole-

building retrofit, incorporating weatherization alongside heat-pump conversion to improve 

overall comfort while reducing energy consumption. These customers represent a significant 

population—more than 10% of the total in coastal regions. Figure 9 also shows the fractions of 

customers without significant gas or electric heating and with no gas or electric heating detected 

at all. The latter category likely represents customers relying on delivered fuels (e.g., propane or 

wood) for all their heating, whereas the former category may represent customers using delivered 

fuels for their primary heating, as well as other customers who may be limiting their use of space 

heating due to a high energy-cost burden. Identifying these customer categories is important for 

ensuring equitable access and equitable outcomes for electrification programs. This figure 

demonstrates that analysis of meter data can be used indirectly to draw inferences about these 

often hard-to-reach populations. 

 
10 For preliminary measurements of this effect, see the paper by Kerrigan et al. in these proceedings. 
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Figure 9. Fractions of customers with significant heating consumption from both fuels, with 

significant heating from neither fuel, and with no heating at all from either fuel. 

Results by ZIP Code 

It is also interesting to examine end-use saturations on a finer level of geographic 

granularity, for instance to identify areas that may be particularly well suited for community 

electrification, or to identify areas that may be in need of distribution-system upgrades to support 

electrification. In this section, we look at end-use saturations on a ZIP code level to gain a more 

fine-grained understanding of end-use variation. Figure 10 shows heat maps of the fractions of 

customers with significant air conditioning and gas heating consumption.  

 

     

Figure 10. Heat maps of air conditioning (left) and gas heating (right) saturations, by ZIP code, across the 

analyzed territory. 

Dramatically different patterns are evident. As expected based on local climate, AC 

saturation is low to nonexistent at the coast, nearly universal in the Central valley, and low in the 
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Sierra foothills in the eastern part of the state. Gas heating has a markedly different distribution, 

with a high concentration in the densely populated regions around the Bay Area, Eureka, Fresno, 

and Bakersfield, with sharply lower penetration in rural areas. Examination of the two maps in 

tandem can allow identification of areas with high saturations of both gas heating and air 

conditioning, which may be particularly promising for community-scale electrification. 

Figures 11, 12, and 13 illustrate the dramatic variation in household characteristics and 

end-use saturations that can occur on the ZIP-code level. Each figure shows summary statistics11 

for a single ZIP code, with numbers of particular interest highlighted in red. The first example 

(Figure 11) in Rocklin, a suburb of Sacramento at the base of the Sierra foothills, has very high 

penetration of rooftop PV, at 21%, and nearly universal penetration of air conditioning and gas 

service. Only 4% of customers in this ZIP code have gas heating without significant space 

cooling load, suggesting that electrifying space heating in this area could have significant 

emissions and grid benefits by jointly eliminating gas consumption and reducing peak electricity 

demand via improved cooling efficiency.  

 

Figure 11. Estimated population characteristics for ZIP code 95677 in central Rocklin, northeast of Sacramento. 

The second example (Figure 12) in coastal, semi-urban Berkeley, has a higher 

multifamily fraction and a sharply lower penetration of rooftop PV. Only 7% of customers have 

space cooling, while 90% have gas service and 64% use it significantly for heating. Electrifying 

space heating in this area would introduce a substantial number of new air conditioners into the 

building stock (albeit in a temperate climate); this will have implications for peak electricity load 

that are important to forecast and plan for. 

The third example (Figure 13), a rural area northwest of Bakersfield in the San Joaquin 

Valley, has moderate penetration of rooftop PV, nearly universal cooling, and no gas service at 

all. Only a small fraction of customers have significant electric heating usage, suggesting 

widespread use of propane or wood for space heating. Electrifying space heating in this area 

would have significant positive impacts for emissions and the grid by potentially eliminating the 

use of high-emission heating fuels and reducing peak electricity loads. This example illustrates 

the value in taking a comprehensive approach to characterizing the population in an area for 

electrification targeting. A strategy focused on looking for customers with high gas heating 

usage, for example, would not have identified this area for attention. 

 
11 Multifamily fractions presented in the summaries were estimated by parsing customer address information to 

detect keywords and characters that indicate multifamily housing, such as Apt., Unit, #, etc. 
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Figure 12. Estimated population characteristics for ZIP code 94703 in Berkeley. 

 

Figure 13. Estimated population characteristics for ZIP code 93280, a rural area northwest of Bakersfield. 

These three examples are a small representation of the diversity of housing characteristics 

across the state. They illustrate the importance of having a detailed and fine-grained 

understanding of the population to support designing demand-side policies and programs that are 

most effective for the grid and the climate. Combining meter data with customer characteristics 

and with OpenEEmeter analytics can unlock these crucial insights for utilities and policymakers. 

Conclusion 

Weather-normalized analysis of customer meter data has had widespread applications in 

measuring the impacts of demand-side interventions and in targeting customers for program 

participation. In this study, we examined how such analysis, applied to the meter data for a 

whole population, can support planning and forecasting for policies and programs. Starting with 

a comprehensive dataset of electricity and gas meter data for households in PG&E service 

territory, collected by the CEC, we used the OpenEEmeter software, running on Recurve’s large-

scale analytics platform, to estimate disaggregated heating and cooling loads for each customer. 

We then defined thresholds in heating and cooling consumption that could be used to infer the 

use of gas or electricity as a significant source of heating or cooling, and we computed 

saturations of air conditioning, electric and gas space heating, and gas water heating at varying 
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levels of geographic granularity. The results provide a detailed baseline understanding of the 

present-day population pre-electrification, with dramatic variation evident in end-use penetration 

and customer characteristics, both regionally by climate zone and sub-regionally by ZIP code. 

The analysis complements and improves upon traditional survey-based approaches by addressing 

the entire population of customers, rather than being limited to a statistical sample, and by being 

based directly on metered energy consumption, instead of self-reported information. 

Granular understanding of energy consumption patterns across the population will be 

important in preparing for the impacts of widespread electrification. Analyses of the type we 

carried out here can provide important insights for utilities, grid planners, program designers, and 

regulators. The CEC has incorporated the results of this study in their modeling assumptions to 

obtain more accurate cost and energy impacts for their building electrification forecasting work. 

Additional applications include, among others: developing baselines for forecasting and tracking 

system-level demand or population-level emissions, understanding and predicting sources of 

strain on distribution infrastructure, designing programs to more effectively relieve grid stresses, 

identifying promising targets for community-level demand-side interventions, planning for 

appropriate siting and sizing of infrastructure upgrades, and designing outreach to ensure 

equitable program outcomes.  

Essential ingredients for unlocking such insights are access to comprehensive, 

population-wide meter datasets, coupled with computing infrastructure that can perform 

analytics on the appropriate scale, which may range up to tens or hundreds of terabytes of data. 

Modern, parallel computing platforms, such as Recurve’s, are up to the task and can enable a 

wide range of novel insights into energy consumption patterns, measured directly from 

customers’ energy usage data. Such analyses can also be repeated on a regular cadence, more 

frequently than survey timelines allow, which will allow the utility industry to track progress and 

to respond nimbly to the and drastic changes that will result from rapid electrification.  
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