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ABSTRACT 

Over the past decade, we have seen several Northeast and Midwest utilities deliver 

energy efficiency programs that target no- to low-cost operational changes for small and midsize 

businesses (SMB) and public institutions. These programs use Advanced Metering Infrastructure 

(AMI) data to identify customers with significant energy savings potential and assist participants 

to optimize their energy usage through modifications to their operational schedules, ultimately 

achieving energy savings.  

For these programs to effectively scale, they must demonstrate cost-effective energy 

savings. However, an industry-accepted, detailed evaluation protocol for these types of programs 

does not exist and has resulted in discourse among regulators, utilities, evaluators, and program 

implementers. We believe no- to low-cost SMB programs are similar enough to Strategic Energy 

Management (SEM) programs to rely on the Department of Energy’s Uniform Methods Project 

(UMP) Chapter 24, SEM Evaluation Protocol as a starting point. In this paper, we share our 

findings from an analysis in which we test various modeling approaches with a focus on their 

similarities and comparative practical limitations.  

Our goal is to identify an approach capable of producing an unbiased, weather 

normalized savings estimate with the flexibility of extrapolation while still operating within 

program data and budget limitations. Based on our findings, we recommend evaluators start by 

using the Savings as a Function of Weather Model described below that is similar to the Pre-Post 

Model in the UMP Chapter 24. This model produces weather normalized annual energy savings, 

while adding simple modifications to the model specification based on site-specific details.  

Introduction 

No- to low-cost programs aim to provide maximum energy savings with limited to no 

financial expenditure on behalf of the participant. Often these programs are targeted at low-

income customers, but utilities have recently begun delivering these programs to SMBs, 

including programs that specifically target operational enhancements. These programs provide 

qualified business customers with energy management information services to identify low- and 

no-cost energy-saving operational changes. These types of changes often include heating, 

ventilation, and air conditioning (HVAC) cooling and heating adjustments as well as lighting 

schedule adjustments for buildings such as retail stores, commercial office buildings, schools, 

and government buildings. 

In addition, these programs make recommendations solely on the customer’s energy 

usage data. Rather than program implementers conducting on-site visits or in-person audits, they 

remotely analyze data for each participant and provide personalized low- or no-cost, easy-to-

implement recommendations. The program implementer also monitors energy usage and 

measures energy savings for each participant.  
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These types of programs are intriguing to SMBs because they require minimal financial 

investment (if any) and time commitment, they do not require implementation of the 

recommendations, and they provide an opportunity to reduce operating costs by reducing the 

customer’s energy usage. For these programs to scale, they must demonstrate cost-effective 

energy savings. However, an industry-accepted, detailed evaluation protocol for these types of 

programs does not exist and has resulted in discourse among regulators, utilities, evaluators, and 

program implementers.  

Typically, these programs aim to report weather normalized annual savings. We believe 

the evaluation approach to estimate savings for these programs should have the ability to achieve 

four key items: 

 

1. Produce an unbiased estimate of savings1 

2. Produce weather normalized savings 

3. Flexibility to extrapolate savings from a partial year of post implementation data 

while accounting for weather differences expected in a full calendar year 

4. Apply a generalized approach across multiple project types (i.e., a limited amount of 

custom modeling tailored to each project)  

 

Unfortunately, there is not currently an established protocol to generate evaluated savings 

based on the four core items above for no-to low-cost programs focused on SMBs. One approach 

for Measurement and Verification (M&V) of these programs to estimate weather normalized 

annual savings follows the International Performance Measurement and Verification Protocol 

(IPMVP) Option C, where energy savings are estimated using site-specific, whole building 

regression models (Guidehouse 2022; Opinion Dynamics 2023). Low- to no-cost SMB 

operational programs typically do not produce project level savings large enough to justify fully 

custom models, site visits, or special metering for every project. This makes IPMVP Option C 

appealing as it can produce savings estimates using AMI data already collected through the 

program. Additionally, this allows for an automated approach by applying a standard model 

specification to all projects.  Given the types of buildings typically included in these programs, 

one could reasonably assume that a linear regression including AMI and weather data can 

produce unbiased estimates of energy savings for most projects.  

While IPMVP Option C provides a framework for estimating weather normalized annual 

savings, it is very broad and leaves many of the details up to the modeler’s discretion. For 

example, while it does not provide an example of a specific regression equation to estimate 

project-level savings, it does provide types of explanatory variables to include in a regression 

model, such as degree days, occupancy information, or operating mode (IPMVP 2022).  

The Department of Energy’s UMP protocols were designed to provide industry standard 

approaches for estimating energy savings for different types of energy efficiency measures. 

Specifically, the UMP SEM protocol was produced based on the IPMVP Option C 

methodological approach, “but provides greater guidance on how to address the specific 

challenge of determining and evaluating energy savings achieved through SEM” (Stewart 2017).   

We believe SEM programs are similar enough to low- to no-cost SMB operational 

programs for the UMP SEM protocol when evaluating these programs. The main differences are 

that no- to low-cost program implementers focus exclusively on facility operations, all contact 

 
1 Unbiased savings estimates must be linear in parameters, random sampling, sample variation in the explanatory 

variables, and zero conditional mean (Wooldridge 2019) 
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between program participants and program staff are remote, and all operational changes are 

implemented by the participant and their employees or contractors.  

In this paper, we examine the pros and cons of three models included in the UMP SEM 

protocol and conclude that, given its flexibility, the Savings as Function of Weather Model is a 

viable model to produce annual weather normalized savings for these programs. The Savings as 

a Function of Weather Model can produce an unbiased estimate of savings, weather normalized 

savings, has the potential to extrapolate savings based on a required amount of post 

implementation data available, and can be applied to multiple project types. 

It is important to note that this paper does not assess the accuracy and precision of each 

UMP SEM protocol model. We believe an assessment of a methodology’s ability to produce the 

correct type of savings should be conducted prior to an assessment of accuracy. Information 

regarding the testing of accuracy and precision for similar models can be found in (Demand Side 

Analytics 2022). This paper assumes that all the UMP SEM protocol models have approximately 

the same level of accuracy and precision. Each of these models used the same input data and the 

regression specifications do not differ to a large degree. In fact, one can produce exactly 

equivalent savings estimates across models under certain specifications.2 

The tested models in this paper primarily differ based on the outputs they can provide. 

Not every UMP SEM protocol model can produce weather normalized savings for example. 

Therefore, we compare the regression models within the UMP SEM protocol to assess 

practicality of which model is the best to evaluate no-to low-cost SMB programs based on the 

four key items listed above.  

Tested Evaluation Methodologies 

There are five regression-based savings methodologies described within the UMP SEM 

Evaluation Protocol (Stewart 2017), which are described below in Table 1. 3 Within this table, 

“Avoided Energy” refers to savings estimates that occurred during the observed post-period, 

whereas Normalized Savings refers to savings estimates that would occur under hypothetical 

“normal” weather conditions. This study analyzed the Pre-Post Model, the Savings as a Function 

of Weather Model, and the Normalized Operating Conditions Model, which are shaded in grey in 

Table 1.  

One of our four key items is the ability to produce Normalized Savings. We chose to 

include the Savings as a Function of Weather Model and the Normal Operating Conditions 

Model in the analysis because these two models produce site-specific normalized savings rather 

than avoided energy. We also included the Pre-Post Model because we have seen it commonly 

used for M&V when evaluating these programs, even though it does not produce normalized 

savings. We did not include the Forecast Model, Backcast Model, or Panel Model within this 

study because they do not produce normalized savings based on the methodology described in 

the UMP SEM protocol. In addition, the Panel Model does not produce site-specific savings that 

are often desired in these types of evaluations. However, if site-specific savings are not 

important, it may be possible to apply similar regression equations to those we examine here but 

in a panel context. 

 
2 For example, the Savings as a Function of Weather Model produces the same savings as the Normalized Operating 

Conditions model when all terms are interacted with Post and the results are normalized to the same conditions. 
3 The Savings as a Function of Weather Model is a variation of the Pre-Post Model, and so they are grouped as the 

same methodology. 
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Table 1. SEM regression-based savings methodologies 

Methodology Name Description 

Forecast Model Uses baseline period to train a model and forecast consumption of the 

post-period to produce avoided energy savings. Savings equals the 

difference between forecasted usage and actual. 

Pre-Post Model Uses baseline and post-period to estimate the effect of the post-period 

on energy use for each project to produce avoided energy savings. 

Output units are kWh/day. 

Savings as a Function 

of Weather Model 

Uses baseline and post-period to estimate the effect of the post-period 

on energy use to produce either avoided or normalized energy savings. 

Output units are kWh/degree-day. 

Normal Operating 

Conditions Model 

Estimates parameters separately for baseline and post-periods (i.e., two 

models) and then projects normalized conditions consumption for both 

models using the estimates to produce normalized energy savings. 

Savings equals the difference between the projects. 

Backcast Model The same as the Forecast Model but in reverse to produce avoided 

energy savings. 

Panel Model Uses baseline and post-period to estimate the effect of the post-period 

on energy use across the projects to produce avoided energy savings. 

Output units are kWh/day. 
Source: (Stewart 2017) 

 

For each methodology tested, the analysis utilized a subset of projects from an evaluation 

Guidehouse completed for a Midwestern utility’s no- to low-cost SMB operational program. The 

four projects selected for the analysis represented the following common measurement 

characteristics: 

 

• HVAC measures 

• Lighting measures 

• Schools 

• Short post-periods (i.e., less than a third of a calendar year during the post-period) 

 

These four projects were chosen to collectively cover all the measure characteristics 

listed above. Beyond these characteristics, these projects were chosen arbitrarily prior to 

examining any results. Each project, including the post-period start and end dates, building type, 

and energy efficiency measures conducted for each project, are included in Table 2. 
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Table 2. SMB project descriptions 

Project 

Name 

Post-

Period 

Start Date 

Post-

Period End 

Date 

Building 

Type* 

Savings Description 

Heating 01/06/2022 12/31/2022 Commercial Heating setpoint adjustment 

School 02/09/2022 12/31/2022 Grade School HVAC schedule and heating/cooling 

setpoint adjustment. 

Lighting 02/10/2022 12/31/2022 Retail Store Lighting schedule adjustment and 

malfunction correction. 

Short Post-

Period 

09/16/2022 12/31/2022 Public 

Assembly 

Building 

HVAC schedule and cooling setpoint 

adjustment.  

* During the evaluation, the only information we received regarding participant information was the building type. 

Source: Guidehouse analysis 

 

All methodologies used hourly AMI data that was aggregated to the daily level as well as 

Typical Meteorological Year (TMY3) weather data. For simplicity, this analysis included TMY3 

weather data from the same weather station for the four projects (Wilcox and Marion 2008). 

While a standard evaluation would use the weather station closest to each participant, this 

analysis kept the source of historical weather information the same across the projects for 

consistency purposes. This historical weather information was sourced from the National Ocean 

and Atmospheric Administration’s (NOAA’s) Quality Controlled Local Climatological 

Database. 

Pre-Post Model 

The Pre-Post Model used the baseline period (i.e., period prior to the energy efficiency 

intervention) and the post-period (i.e., period after the intervention) to estimate average daily 

energy savings for each project. Within this model, the post-period term was not interacted with 

other variables, so the savings were not dependent on additional factors included in the model, 

producing a “level savings effect” (Stewart 2017). The “level savings effect” equals the effect of 

energy usage during the post-period, net of the effects accounted for by other variables included 

in the regression model (e.g., month, weather), which we interpreted as savings. An example of 

the Pre-Post Model equation is shown in Equation 1. 

 

Equation 1. Example pre-post model equation 

𝐸𝑑 = ∑ 𝛽𝑑,𝑚𝑀𝑜𝑛𝑡ℎ𝑡,𝑚 +  𝛾𝐶𝐷𝐷𝑑 +  𝛿𝐻𝐷𝐷𝐷 +  𝜃𝐶ℎ𝑎𝑛𝑔𝑒𝑑 + 휀𝑑  

12

𝑚=1

 

Where: 

• d and m index the date and month of year, respectively. 

• 𝐸𝑑 is the customer’s energy consumption for date d. 

• 𝑀𝑜𝑛𝑡ℎ𝑡,𝑚 comprises a set of 12 month-of-year indicators, each of which equals 1 if t 

falls in month m, and 0 otherwise. 

• 𝐶𝐷𝐷𝑑 are the cooling degree days during date d. 
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• 𝐻𝐷𝐷𝑑 are the heating degree days during the date d. 

• 𝐶ℎ𝑎𝑛𝑔𝑒𝑑 is a vector of binary variables, each of which equals 1 if d falls within the dates 

of the confirmed change(s), and 0 otherwise. This includes any changes to the program 

component and baseline adjustments as applicable.  

• The  𝛽𝑑,𝑚, 𝛾, δ, and 𝜃 coefficients are unknown parameters to be estimated. 

• 휀𝑑 is a daily mean-zero disturbance term. 

 

Once this model was estimated for each project, savings equaled the post-period 

estimate (i.e., 𝜃) multiplied by the number of time intervals, or the number of days within the 

post-period for each site. Daily avoided energy savings in Table 3 equates to 𝜃 in Equation 1. 

Total avoided energy savings is calculated by multiplying the number of post-period days by the 

daily avoided energy savings, whereas total annualized savings is calculated by multiplying the 

daily avoided energy savings by 365 days. The avoided energy and annualized savings ratios 

from the Pre-Post Model are also included in Table 3. 

Table 3. Avoided energy and annualized results for Pre-Post Model  

Project Name 
# Post-Period 

Days 

Daily Avoided 

Energy Savings 

(kWh) 

Total Avoided 

Energy Savings 

(kWh) 

Total 

Annualized 

Savings (kWh) 

Savings 

Ratio 

Heating 358 22.7 8,128 8,287 98.1% 

School 326 798.4 260,285 291,423 89.3% 

Lighting 325 54.6 17,734 19,917 89.0% 

Short Post-Period 106 64.3 6,814 23,463 29.0% 
Source: Guidehouse analysis 

There are two fundamental issues with the Pre-Post Model. The first issue is that this 

model does not produce weather normalized savings. This methodology does not include TMY3 

data, or any other normalized weather data set, in any steps. The only calculation step between 

the model output and the savings was multiplying the post-period parameter by the number of 

days within the post-period. Therefore, these results could not be considered normalized as there 

was no mechanism to adjust the savings to a different set of weather conditions.  

The second issue is the potential bias in savings results when calculating annualized 

savings. When taking a deeper look into the “Short Post-Period” project, Table 3 shows that this 

project’s total avoided energy savings was 29% smaller than the total annualized savings. This 

project raised the cooling setpoints at the site, but the post-period goes from mid-September 

2022 through December 2022. If it is assumed that the cooling season goes from June through 

September each calendar year, then the impact of the cooling setpoint change for this project was 

based on 14 days of cooling season, which was around 14% of the total post-period days. 

Therefore, the average daily savings for this project was based on a proportion of around 14% 

for the cooling season and 86% for the non-cooling season during the post-period. 

When this proportion of cooling and non-cooling savings during the post-period was 

extrapolated to 365 days, the annualized savings value represented a year with these uneven 

proportions. Figure 1 examines the uneven seasonal proportions between the baseline and post-

periods for the “Short Pre-Period” project.4 

 
4 Within this paper, “post-period” and “reporting period” refer to the period after a customer makes operational 

energy changes through this type of program. 
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Figure 1. Cooling and non-cooling proportions of data during the baseline and post-periods for 

the “Short Pre-Post” project. Source: Guidehouse analysis. 

Since the extrapolation for this methodology had no mechanism to adjust to different 

seasonality than what was observed during the post-period, the extrapolation of savings for this 

project was likely causing a bias towards zero by not fully capturing the effect of the increased 

cooling setpoint that would be expected over the course of a full year.  

Figure 2 summarizes the Pre-Post Model’s ability to achieve our key items. When this 

model is properly specified, it can produce an unbiased estimate of avoided energy savings. This 

model can be easily applied across project types and can accommodate minor adjustments, such 

as non-routine events. However, the Pre-Post Model has no direct mechanism to produce 

normalized savings. In addition, without incorporating an entirely new methodology, 

extrapolating savings from this model would mean extending the estimated avoided energy 

savings to a full year. This can introduce bias given it does not account for seasonal differences 

between the post-implementation period and a calendar year. While the Pre-Post Model is 

beneficial for producing unbiased avoided energy savings, we do not recommend using this 

model to produce annual normalized energy savings. 
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Pre-Post Model 

 
Figure 2. Pre-Post Model Key Items 

Normal Operating Conditions Model 

The Normal Operating Conditions Model estimated savings under normal operating 

conditions. This is the most fundamental way to produce weather normalized savings among the 

five regression-based methodologies for evaluating SEM programs (Stewart 2017). This method 

required separate estimation of parameters for the baseline and post-periods rather than a single 

model that includes both periods. 

This method used the values from both models to predict outcomes using normalized 

weather conditions as inputs. The Normal Operating Conditions Model equation was the same as 

Equation 1, except the baseline and post-periods were estimated separately. This produced an 

estimate of consumption under normal conditions separately for the baseline and post-periods. 

The post-period results were subtracted from the baseline period results to produce normalized 

savings.  

Unfortunately, this method runs into limitations given our example regression equation 

when there are months missing from the post-period. For example, the “Short Post-Period” 

project was missing January through August from the post-period, and so the post-period model 

could not produce estimates for any of those binary indicator parameters and therefore could not 

directly produce a full year of savings. Instead, this analysis produced normalized savings for the 

duration of the post-period for the sake of comparison to the other methodologies. 

Table 4 shows the savings ratios in savings comparing the Pre-Post Model results to the 

Normal Operating Conditions Model results. This provides an idea of how weather-normalizing 

affects the results for these projects. The weather normalized savings of the Normal Operating 

Conditions Model ranged from 96% to 104% of the Pre-Post Model results. Similar to the Pre-

Post Model, the Normal Operating Conditions Model may not have adequately captured the 

relationship between savings and weather for the “Short Post-Period” project. 
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Normal Operating Conditions Model 

Table 4. Comparison of Pre-Post Model and Normal Operating Conditions Model 

Project Name Pre-Post Model 

Savings (kWh) 

Normal Operating Conditions 

Model Savings (kWh) 

Savings Ratio 

Heating 8,128 7,974 98.1% 

School 260,285 271,246 104.2% 

Lighting 17,734 17,444 98.4% 

Short Post-Period 6,814 6,602 96.9% 
Source: Guidehouse analysis 

 

Figure 3 summarizes the Normalized Operating Conditions Model’s ability to achieve 

our key items. Properly specified, this model can be expected to produce an unbiased estimate of 

normalized savings. This model can also easily be applied across project types and can 

accommodate minor adjustments such as non-routine event binary variables. Unfortunately, 

extrapolation of savings with the Normal Operating Conditions Model is not straightforward 

with certain model specifications. Therefore, the Normal Operating Conditions Model is not the 

preferred model to use when estimating annual normalized savings for these programs. 

 

  

 
Figure 3. Normalized Operating Conditions Model Key Items 

Savings as a Function of Weather Model 

The Pre-Post Model can be slightly adjusted to produce weather normalized results. The 

Savings as a Function of Weather Model allows for the estimation of both a “level savings 

effect” and a “slope-shift savings effect,” which allows the model to produce savings that vary 

with weather (Stewart 2017). 

This model has the same limitations as the Pre-Post Model in that the parameter 

estimates on the “post” variable(s) are reflective of post-period conditions. However, one of the 

main benefits of the Savings as a Function of Weather Model is that savings are decomposed into 

level savings and savings per degree day. In addition, this method can achieve weather-

normalization in much the same way as the Normal Operating Conditions Model. We also 

believe it enables potential extrapolation of savings to a full year from a partial year of post-

Unbiased 
Estimate of 

Savings



Produce 
Weather 

Normalized 
Savings



Ability to 
Extrapolate 

Savings

×

Apply the 
Approach 

Across Multiple 
Projects



© 2024 ACEEE Summer Study on Energy Efficiency in Buildings



period data using a more reasonable assumption that the relationship between savings and 

weather is fully captured in the post-period.5 This contrasts with the Pre-Post Model 

extrapolation that requires the assumption that the post-period conditions are reflective of an 

entire year. This assumption is often untrue for projects with HVAC measures and short post-

periods. 

Equation 2 lays out an example equation for the Savings as a Function of Weather Model. 

It is very similar to the Pre-Post Model (Equation 1), except it includes interactions between the 

intervention and weather. This equation produces a level effect as well as an effect dependent on 

weather. 

 

Equation 2. Example savings as a function of weather model equation 

𝐸𝑑 =   ∑ 𝛽𝑑,𝑚𝑀𝑜𝑛𝑡ℎ𝑡,𝑚 +  𝛾𝐶𝐷𝐷𝑑 +  𝛿𝐻𝐷𝐷𝑑 +  𝜃𝐶ℎ𝑎𝑛𝑔𝑒𝑑 +  𝜑𝐿𝐶ℎ𝑎𝑛𝑔𝑒𝑑 ∗ 𝐶𝐷𝐷𝑑

12

𝑚=1

+ 𝜑𝑄𝐶ℎ𝑎𝑛𝑔𝑒𝑑 ∗ 𝐻𝐷𝐷𝑑 +  휀𝑑 

Where: 

• d and m index the date and month of year, respectively. 

• 𝐸𝑑 is the customer’s energy consumption for date d. 

• 𝑀𝑜𝑛𝑡ℎ𝑡,𝑚 comprises a set of 12 month-of-year indicators, each of which equals 1 if t 

falls in month m, and 0 otherwise. 

• 𝐶𝐷𝐷𝑑 are the cooling degree days during date d. 

• 𝐻𝐷𝐷𝑑 are the heating degree days during the date d. 

• 𝐶ℎ𝑎𝑛𝑔𝑒𝑑 is a vector of binary variables, each of which equals 1 if d falls within the dates 

of the confirmed change(s), and 0 otherwise. This includes any changes to the program 

component and baseline adjustments as applicable.  

• The  𝛽𝑑,𝑚, 𝛾, δ, 𝜃, 𝜑𝐿 and φQ coefficients are unknown parameters to be estimated. 

• 휀𝑑 is a daily mean-zero disturbance term. 

When applying observed post-period weather to the Savings as a Function of Weather 

Model, the results, shown in Table 5 were nearly the same as the Pre-Post Model. This was 

expected given the only difference between these two models was the inclusion of the 

intervention and weather interaction terms within the Savings as a Function of Weather Model. 

 

 
5 To date, Guidehouse has not encountered any research to determine the minimum amount of post-period data 

required to generate accurate extrapolation results. 
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Table 5. Comparison of non-annualized Pre-Post Model results and non-weather normalized 

Savings as a Function of Weather Model results 

Project Name Pre-Post Model 

Savings (kWh) 

Savings as a Function of Weather 

Model (Non-Weather normalized) 

Savings (kWh) 

Savings 

Ratio 

Heating 8,128 8,071 100.7% 

School 260,285 256,406 101.5% 

Lighting 17,734 17,398 101.9% 

Short Post-Period 6,814 6,835 99.7% 
Source: Guidehouse analysis 

 

Next, in Table 6, after producing weather normalized from the Savings as a Function of 

Weather Model, the results of this model were compared to the Normal Operating Conditions 

Model. The most notable difference was in the “Lighting” project, which was not expected to 

have weather-sensitive savings. In this case, we recommend using the Pre-Post Model results 

rather than forcing the model to estimate an effect that does not exist. 

 

Table 6. Comparison of Normal Operating Conditions Model results and weather normalized 

Savings as a Function of Weather Model results 

Project Name Normal Operating 

Conditions Model 

Savings (kWh) 

Savings as Function of 

Weather Model (Weather 

normalized) Savings (kWh) 

Savings Ratio 

Heating 7,974 8,329 95.7% 

School 271,246 282,387 96.1% 

Lighting 17,444 19,404 89.9% 

Short Post-Period 6,602 6,781 97.4% 
Source: Guidehouse analysis 

 

The final comparison was to extrapolate the savings for the Savings as a Function of 

Weather Model to a full typical weather year and compare it to the Pre-Post Model savings that 

were also extrapolated to a year. The main difference between these results was attempting to 

weather-normalize and account for seasonality through the weather dependent terms within the 

Savings as a Function of Weather Model.  

The savings ratios in Table 7 are very close, ranging from 98.2% to 101.5%. The small 

difference in results is based on a couple of items: 

 

• The difference between the normal, annual weather and the observed post-period weather 

• The model accuracy in capturing the relationship between savings and weather 

 

If the model cannot capture the relationship between savings and weather, then the non-

interacted “post” term represents a non-weather sensitive savings estimate. In that case, the 

Savings as a Function of Weather Model ends up not performing much differently compared to 

the Pre-Post Model. 
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Savings as a Function of Weather Model 

Table 7. Comparison of annualized Pre-Post model results and weather normalized Savings as a 

Function of Weather Model results 

Project Name Pre-Post Model 

(Annualized) (kWh) 

Savings as Function of 

Weather Model (Weather 

Normalized) Savings (kWh) 

Savings 

Ratio 

Heating 8,287 8,442 98.2% 

School 291,423 294,249 99.0% 

Lighting 19,917 19,959 99.8% 

Short Post-Period 23,463 23,122 101.5% 
Source: Guidehouse analysis 

 

Figure 4 summarizes the Savings as a Function of Weather Model’s ability to achieve our 

key items. This model can produce an unbiased estimate of normalized savings and can easily be 

applied across project types as well as accommodate minor adjustments, such as non-routine 

events. This model can also be adjusted to extrapolate savings while accounting for estimated 

weather differences. However, it is important to note that extrapolation may still introduce bias 

in some cases if the model cannot correctly capture all relevant relationships. For example, 

projects related to cooling-dependent measures should not extrapolate savings if the post-

implementation period does not include any information during the cooling period. 

 

 

 
Figure 4. Savings as a Function of Weather Model Key Items 

Potential Model Adjustments 

Based on the testing of various SEM methodologies above, a one-size-fits-all approach 

may not work for all projects. Rather, it could be beneficial to consider more site and measure 

characteristics for each project when evaluating these types of programs in the future. We 

recommend adjusting the Savings as a Function of Weather Model based on site-specific 

characteristics (i.e., Alternative Model).  

For each project, we use the Savings as a Function of Weather Model as the core model 

and then make modifications based on project-specific details. These were not, necessarily, the 
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best models for each project. Rather, these adjustments were made to demonstrate the flexibility 

with this methodology when evaluating no- to low-cost SMB operational projects. In addition to 

these examples, binary indicators may be added to the model to account for non-routine events. 

“Heating” Project 

 For the “Heating” project, the evaluators knew that the heating setpoints were lowered. 

Therefore, this project should not produce any savings related to cooling, and so the interaction 

between cooling degree days (CDD) and the intervention term were removed from the model. 

Table 8 shows no statistical significance at the 90% confidence level on the interaction term 

between HDD and the intervention (i.e., “HDD*Post”) for either model. The heating-dependent 

effect would be difficult to detect if this site had non-electric heating. Therefore, it is important 

to confirm the site’s heating fuel type and clarify how this measure was producing electric 

savings. 

 

Table 8. Comparison of Savings as a Function of Weather Model and Alternative Model results 

for “heating” project 

Model Term Savings as a Function of Weather Model Alternative Model 

Estimate Standard 

Error 

P-Value Estimate Standard 

Error 

P-Value 

Post -34.160 8.194 <0.001 -25.909 4.083 <0.001 

HDD*Post 0.014 0.009 1.585 0.007 0.006 0.237 
Source: Guidehouse analysis 

“School” Project  

The “School” project included heating and cooling schedule and setpoint adjustments. 

Because schools normally have seasonal, non-weather dependent usage, the Alternative Model 

can replace the monthly fixed effects with an indicator variable determining summer vacation. 

When replacing the monthly fixed effects with a summer vacation indicator, the model results in 

Table 9 show a stronger cooling-dependent effect (i.e., “CDD*Post”), but the heating-dependent 

effect (i.e., “HDD*Post”) is no longer statistically significant at the 90% confidence level. This 

aligns with a non-electric heating site. The monthly fixed effects may have created difficulties 

for the model to separate weather effects compared to separating the heating- and cooling-

dependent effects. 

 

Table 9. Comparison of Savings as a Function of Weather Model and Alternative Model results 

for “school” project 

Model 

Term 

Savings as a Function of Weather Model Alternative Model 

Estimate Standard 

Error 

P-Value Estimate Standard 

Error 

P-Value 

Post -935.990 380.504 0.014 -619.929 365.733 0.091 

CDD*Post -1.050 1.077 0.330 -1.873 1.046 0.074 

HDD*Post 0.590 0.452 0.192 0.199 0.418 0.635 
Source: Guidehouse analysis 
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“Lighting” Project 

The “Lighting” project only adjusted the lighting schedule, making this intervention 

insensitive to weather. Therefore, the Pre-Post model was sufficient to use for this project 

because savings were not expected to vary seasonally or with weather. 

“Short Post-Period” Project 

For the “Short Post-Period” project, the best attempt to adjusting the Savings as a 

Function of Weather Model was to remove the interaction between heating degree days (HDD) 

and the intervention term as well as the monthly fixed effects since most of the heating season 

was not included in the post-period. Unfortunately, neither model could detect a statistically 

significant weather dependent effect at the 90% confidence level separate from the level effect. 

This project likely had too short of a post-period to estimate unbiased annualized results. 

 

Table 10. Comparison of Savings as a Function of Weather Model and Alternative Model results 

for “short post-period” project  

Model Term Savings as a Function of Weather Model Alternative Model 

Estimate Standard 

Error 

P-Value Estimate Standard 

Error 

P-Value 

Post -62.270 15.873 <0.001 -52.054 6.414 <0.001 

CDD*Post 0.009 0.213 0.967 0.018 0.191 0.927 
Source: Guidehouse analysis 

Project Summaries 

This exercise provided more information about each site, but also raised questions about 

an automated process using a standard Pre-Post Model for every project when evaluating these 

types of programs. Below we summarize the results across the methodologies for each project: 

 

• “Heating”: There was not any information for this project related to heating type, the 

amount the setpoint was lowered, or an explanation for how this project achieved electric 

savings if it did not have electric heat. However, this analysis suggested that if this site 

did have electric heat, then the Savings as a Function of Weather Model should have 

picked up this effect. Unfortunately, none of the models were able to clearly define the 

heating type for this site, but the results provided more information about the site’s 

heating usage compared to what was originally included in the site description in Table 2. 

• “School”: This project did not display anything unusual, although it could be worth 

examining a modified model that allows separate extrapolation between in-session and 

out-of-session periods.  

• “Lighting”: This project was likely fine using the Pre-Post Model, but it was included in 

the analysis for comparison purposes. An important finding from this project was that it 

is not beneficial to force a model to estimate weather dependent savings when none are 

expected. 

• “Short Post-Period”: This project likely did not include enough post-period data to 

properly capture the effect of a cooling setpoint adjustment. The Savings as a Function of 

Weather Model demonstrated this by failing to show a relationship between savings and 

cooling degrees.  
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Conclusion 

This analysis has shown that the Savings as a Function of Weather Model adapted from 

the Pre-Post Model within the UMP SEM Evaluation Protocol is a viable model for evaluating 

energy savings from no- to low-cost operational programs. This model can be used as a base 

model to produce weather normalized annual energy savings for each program participant, but 

also has the flexibility to consider site-specific characteristics, such as the heating type, the 

seasonality of energy usage (e.g., summer break period for schools), and the amount of days 

during the post-period. These adjustments to the model may include, but are not limited to, 

indicator variables for significant schedule changes (e.g., summer break) and removing the 

interaction terms between the intervention term and weather term when savings are not expected 

for a particular season (e.g., a project with only the heating setpoints lowered). 

This modeling approach can produce normalized savings extrapolated to a full year in 

cases when the post-period is shorter than a year. It also allows the extrapolation to account for 

expected seasonality for weather dependent projects. However, the ability to estimate these types 

of savings in a defensible manner requires additional considerations for each project, especially 

when it comes to data availability. There is limited certainty when extrapolating savings based 

on a partial year of data for measures that are not weather dependent, such as lighting, because 

energy usage for these measures does not fluctuate greatly depending on the weather. However, 

the risk for accurately extrapolating savings based on limited data for weather dependent 

measures, such as adjusting HVAC schedules, increases dramatically. This is demonstrated with 

the inability to detect statistically significant weather dependent effect for the “Short Post-

Period” project. 

Using the Savings as a Function of Weather Model from the UMP SEM protocol as a 

base model with small adjustments to consider site-specific characteristics creates a streamlined 

M&V approach. Application of a standard model to all projects can allow for automation, so 

long as the modeler builds in the appropriate quality control checks and understands when the 

standard model does not work. 

The analysis in this paper only included four SMB projects as the intent was to examine 

the practical functionality of multiple approaches. To better understand how the Savings as a 

Function of Weather Model performs and what additional site-specific adjustments can be made 

to the model, we recommend replicating this analysis with additional projects. Including more 

sites with a partial year of post-period data could help to develop an approach for extrapolating 

weather dependent savings to a full year based off a partial year of data. The accuracy of 

extrapolation across a larger sample could be tested by extrapolating savings for a site with a 

partial year of post-period data and then comparing that value to the estimated normalized 

savings for those same sites after they have a full year of post-period data.  

In addition, to date, Guidehouse has not seen any research that investigates the minimum 

amount of post-period data required to support accurate extrapolation results. For subsequent 

research to this paper, Guidehouse is developing an analysis to investigate the declination of 

extrapolation accuracy based on the amount of post-period data available. We plan to analyze 

extrapolation accuracy based on the project type (e.g., lighting measures versus HVAC control), 

the amount of energy savings, and other project-specific factors that may contribute to 

extrapolation accuracy. 
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