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ABSTRACT 

Commercial buildings’ decarbonization goals have increased the importance of 

understanding the greenhouse gas (GHG) impacts of energy efficiency (EE) projects. Many 

organizations have set GHG reductions goals, and annual GHG reporting is increasingly required 

for regulatory or internal reporting purposes. Annual GHG reporting focuses on defining the 

equivalent emissions of energy consumed (aka ‘carbon footprint’), and does not specify emissions 

reduction calculations for energy efficiency projects. 

Scope 2 emissions, indirectly arising from electricity consumption, vary by time and 

location based on an increasingly diverse generation mix, and the GHG benefits of energy 

efficiency vary accordingly. There is currently no consensus on methods for determining GHG 

emission reductions for energy efficiency projects, and there exists a lack of awareness of the 

different datasets and methods available. The growing adoption of advanced measurement & 

verification (M&V) using interval data provides a useful data input for such calculations. 

This paper describes implications of taking different approaches to calculating scope 2 

GHG impacts for a given project, to support informed choices in the approach used. The paper 

also presents emissions reductions estimates from seven different EE project savings scenarios 

using different tools. The findings provide insight to building owners, researchers and M&V 

practitioners on the temporal GHG impacts of savings from EE projects, and how it complements 

the annual reporting paradigm. This could potentially accelerate the adoption of EE measures to 

meet decarbonization goals when they are better matched to high-emission periods. 

1. Introduction  

Decarbonization goals have increased the importance of understanding the GHG emissions 

impacts of energy efficiency projects. Many organizations have set GHG reduction goals (eg. 

Constellation Energy, The Home Depot, Xcel Energy Inc., Walmart1), and annual GHG reporting 

is increasingly required for regulatory or internal reporting purposes (eg. CDP,2 RE100,3 Science 

based targets4). Some jurisdictions are also enacting policies that require reporting GHG emissions 

or will impose penalties for not meeting GHG targets (eg. CA SB 253,5 NY Climate act,6 Boston 

 
1 https://www.climateaction100.org/whos-involved/companies/page/3/?search_companies&company_region=north-

america  
2 https://www.cdp.net/en  
3 https://www.there100.org/  
4 https://sciencebasedtargets.org/  
5 https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=202320240SB253  
6 https://www.nyserda.ny.gov/Impact-Greenhouse-Gas-Emissions-Reduction  
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BERDO7). In addition, Executive Order 14057 outlines an ambitious plan to power federal 

facilities with 100% carbon free electricity8.   

The GHG protocol,9 that sets the standards to measure and manage emissions, defines three 

scopes of emissions. Scope 1 emissions, for example, direct emissions from natural gas usage by 

a hot water boiler, are relatively straightforward to estimate, since emissions conversion factors 

for natural gas usage do not change by time or location. Scope 2 emissions, that indirectly arise 

from electricity consumption, do vary by time and location, due to changes in the resource mix 

and generation efficiency supplying the electricity. The locational variation may be captured using 

location-specific emissions conversion factors such as those provided by the EPA’s Emissions and 

Generation Resource (eGrid) online resource.10 Scope 3 emissions, such as purchased goods and 

services, business travel or investments, are the result of activities from assets not owned or 

controlled by the reporting organization, but that the organization indirectly affects in its value 

chain.  

Scope 2 GHG emissions reported from consumed electricity, commonly performed 

annually, are based on emission conversion factors. Notably, this standard GHG reporting focuses 

on defining the equivalent emissions of electricity consumed (aka ‘carbon footprint’), and does 

not specify emissions reduction calculations for energy efficiency projects. This distinction may 

appear trivial, but there is currently no consensus on methods for determining GHG emission 

reductions for energy efficiency projects. One of the key challenges here is the different ways of 

calculating emissions, which fall into two main categories: 

● Average emissions: Average emissions represent the overall system average for all power 

generation facilities in a region. These are appropriate for developing a carbon footprint 

or emissions inventory. They are calculated by dividing the total emissions from all 

power plants in a given region by the total amount of electricity generated in that region. 

● Marginal or non-baseload emissions: Marginal emissions represent the emissions from 

generation facilities that are dispatched in the energy market in response to an increase or 

decrease in demand.11 The calculation methodology varies depending on the specific 

plants that are used to meet incremental changes in demand. 

eGrid recommends average emissions be used when benchmarking building GHG 

emissions, and non-baseload when quantifying the emissions reductions arising from an energy 

efficiency project. Non-baseload output emission rates were developed for eGRID to provide an 

improvement over the fossil fuel output emission rates as an estimate of emission reduction 

benefits from energy efficiency and clean energy projects. These values are available beginning 

with data year 2004. Non-baseload values may be less appropriate when attempting to determine 

the emissions benefits of resources that operate fairly constantly or operate mostly during off peak 

times, are not very coincident with some intermittent resources, such as CHP or wind power in 

some locations.  

 
7 https://www.boston.gov/departments/environment/building-emissions-reduction-and-disclosure  
8 https://www.sustainability.gov/federalsustainabilityplan/carbon.html  
9 https://ghgprotocol.org  
10 https://www.epa.gov/egrid  
11 https://portfoliomanager.energystar.gov/pdf/reference/Emissions.pdf  
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In isolation, these approaches make sense, though this creates a disconnect whereby the 

difference in building benchmark GHG emissions before and after the energy efficiency project 

(based on average emission factors) will not be equivalent to the GHG reduction from energy 

efficiency (if determined from non-baseload emissions). Figure 1 provides an example of a 

hypothetical energy efficiency project scenario that highlights the discrepancy between applying 

the eGrid average emissions factor and the eGrid non-baseload emission factor. Further, given the 

complexities of generation/grid management, there is uncertainty around which generation 

resource would be ramped down in the case of overall reduction in demand (i.e., will the 

“marginal” plant actually be the one that is ramped down if a building reduces its energy use?). 

Added to this question of average vs. non-baseload emissions is the dimension of time resolution, 

i.e., whether using an annual emission conversion factor (such as from eGrid) or higher resolution 

like hourly factors that are available from other sources such as Wattime or Singularity (see Table 

1). Using time-varying electricity emission factors, offers an opportunity to better understand the 

impacts of energy efficiency relative to the regional grid generation mix, to better inform decision 

making around energy efficiency (Callaway, D. S 2018, Goetsch, Heather, 2022). In summary, 

three distinct challenges associated with the difference between average and marginal emissions 

in the context of GHG emissions calculations for EE projects arise: 

1. Internally inconsistent applications: The inconsistent application of methodologies and 

assumptions when evaluating average versus marginal emissions, resulting in potential 

discrepancies and incompatibility of results. 

2. Questioning the significance of marginal emissions: Concerns regarding the validity and 

relevance of marginal emission calculations, given the complexities and dynamic nature 

of energy generation. 

3. Time-varying aspect: The temporal variability of marginal emissions, which necessitates 

the consideration of time-dependent factors and their impact on emission profiles. 

The remainder of the paper primarily focuses on the third challenge, providing examples and 

analyses related to the time-varying nature of marginal emissions.  
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Figure 1: Example GHG emissions before and after an energy efficiency project showing 

difference between average and marginal emission factors 

The growing adoption of advanced M&V using interval data provides a useful data input 

for such calculations, but many questions remain. Liang, Y et. al 2022 aim to address some of 

these questions, but many questions still remain such as: How do building owners, researchers and 

M&V practitioners use this data to calculate the temporal GHG savings from EE projects? What 

tools are available and what are the implications of using the tools with the interval data? What 

are the different datasets available? This paper outlines the implications of taking different 

approaches to calculating GHG impacts for a given energy efficiency project using interval data, 

to help make informed choices in the datasets/tools used. This paper is organized as follows. 

Section ‘2’ provides an insight into the annual, seasonal and regional variability in both the average 

and marginal emission factors from the different datasets/tools. Section ‘3’ presents a sensitivity 

analysis of different emissions reductions estimates, using 7 different hourly savings shape 

scenarios. Section ‘4’ highlight results of emissions reductions from an example energy efficiency 

project and Section ‘5’ projects future emissions reductions using projected emission factors. 

Finally, Section ‘6’ has a summary of the findings and a conclusion. 

2. Greenhouse Gas (GHG) impact quantification using advanced M&V data 

Three publicly available and one fee-based datasets/tools are used in this study that are described 

in Table 1. All the tools have a very similar fundamental approach, they start with Continuous 

Emissions Monitoring System's data reported through the EPA Clean Air Markets Program Data 

(CAMPD)12 on hourly electricity generation and emissions at every major fossil fuel fired power 

plant in the United States.  

Table 1: GHG data sources and a description of their data 

Tool / data source Description 

AVoided 

Emissions and 

geneRation Tool 

(AVERT)13 

AVERT data contains approximations of marginal emission rates for 14 

AVERT regions and for a national weighted average. AVERT uses a 

peer-reviewed methodology to analyze electric power sector impacts on 

an hour-by-hour basis, but it can also produce annual emission rates for 

each AVERT region and for the nation. The AVERT method uses 

historical hourly emission rates, with the most recent release being 2022. 

 
12 https://campd.epa.gov  
13 https://www.epa.gov/avert  
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Cambium14 

Cambium data contains long-run marginal emission rate estimates for the 

contiguous United States. Cambium data contains modeled hourly 

emission, cost, and operational data for a range of possible futures of the 

U.S. electricity sector through 2050, with metrics designed to be useful 

for forward-looking analysis and decision support. The most recent 

release is 2021. 

WattTime (fee-

based) 

WattTime data contains real-time, short-term forecast, and historical 

marginal emissions data for electric grids around the world. The marginal 

emissions rate provided is a Marginal Operating Emissions Rate 

(MOER), in units of pounds of emissions per megawatt-hour (e.g. CO2 

lbs/MWh).  

Singularity 

Singularity data contains carbon intensity of consumed electricity within 

a region, accounting for imports and exports from neighboring regions. 

(de Chalendar, J., 2019) 

 

The methodology to explore implications of taking different approaches to calculating GHG 

impacts for a given energy efficiency project using interval data presented in this paper, comprises 

four analysis steps.  

• First, the average and marginal emissions factors from the different tools described in Table 

1 are analyzed. The annual, seasonal and regional variability (for two regions) in emissions 

from these tools is presented.  The two regions selected are CAMX (Western Cooling 

Council’s CAMX subregion that covers California, parts of Nevada and Baja California, 

Mexico)15 and FRCC16 (Florida Regional Coordinating Council’s subregion that covers the 

state of Florida). These regions were selected because they have contrasting climate zones 

and generation mixes to provide insights for analyzing the impacts of emissions factors. 

• Second, a sensitivity analysis using hourly test data that comprises kWh savings or a full 

year, using 7 different scenarios is presented, each having the same total kWh savings, but 

different hourly savings.  

• Third, an hourly savings from an example energy efficiency project was used to calculate 

seasonal hourly carbon reduction in two different regions.  

• Finally, future savings were calculated using the savings shape from the example energy 

efficiency project and forecast emissions factors.  

The outcomes of the analysis aim to shed light on how M&V practitioners use this data to 

calculate the temporal GHG savings from EE projects. 

 

 
14 https://www.nrel.gov/analysis/cambium.html  
15 https://www.wecc.org/Reliability/CAMX%20Subregional%20Assessment%202022.pdf  
16 https://www.epa.gov/green-power-markets/us-grid-regions  
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3. Results: Annual, seasonal and regional variability in average and marginal emission 

factors  

Figure 2 illustrates the difference between average and marginal emissions, using data from 

the CAMX region as an example for the year 2020. These examples illustrate the difference in the 

range of emission conversion factors, and seasonal trends. Taking the average of all values shown 

in these figures, we see that marginal emission factors trend higher at 0.82 lbs per kWh than 

average emission factors of 0.51 lbs per kWh. These values compare with an eGrid non-baseload 

emission factor of 0.91 lbs per kWh and average emission factor of 0.45 lbs per kWh 

(approximately 10% different from the WattTime and Singularity values, respectively). Figure 2 

also shows time periods when marginal emission factors can be close to zero, particularly in the 

2000-4500 hour period. This may occur in time periods where load reductions would result in 

curtailment18 of grid-level PV generation instead of reducing fossil fuel generation. 

 

 

Figure 2: Top: Average emission factors across all hours of the year in 2020, CAMX region (Source: 

Singularity), Bottom: Marginal emission factors across all hours of the year in 2020, CAMX region 

(Source: WattTime) 

Figure 3 illustrates the seasonal average hourly, average and marginal emission factors for 

a single region (CAMX) by hour of day and season.19 We observe a reduction in both average and 

marginal emission factors during the day in all seasons, with the most reduction seen in the spring 

season and the middle hours of the day, between 10 am and 2 pm. One of the reasons for this 

reduction could be due to the high level of solar penetration in the state of California, which this 

region encompasses, coupled with the fact that cooling load on the grid is lower in the Spring 

 
18 https://www.caiso.com/documents/curtailmentfastfacts.pdf  
19 Year divided into four seasons of 3 months, where Winter = December to February 
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compared to Summer (California Energy Commission. (2023).20 Marginal emissions have a wider 

range, higher at the high end (0.9 vs 0.65 in the Fall) and lower at the low end (0.2 vs 0.3 in the 

Spring) ( Holland, S. et al. 2022). 

 

 

Figure 3: Top:Seasonal average hourly emission factors for CAMX region, Source: Singularity (average), 

Bottom: Seasonal average hourly emission factors for CAMX region, Source: WattTime (marginal). 

Figure 4 below gives an example of the variation in hourly emission factors between two 

different regions, CAMX and FRCC (example uses Singularity average emission factors). These 

regions were arbitrarily selected to highlight regional and temporal differences in emission factors. 

The largely reduced emission factors during the day in all seasons observed in the CAMX region 

are not seen in the FRCC region. For instance, electricity consumed between 11 am and 1 pm in 

the CAMX region has half the impact on GHG reported emissions than the electricity consumed 

in the FRCC region during the same time period. If an energy efficiency project in the FRCC 

region achieved different savings at different times of the day/year, hourly GHG calculations 

would not end up much different from using a single eGrid annual average emission factor. On the 

other hand, in the CAMX region, there might be a significant difference in the GHG reduction 

estimates when using hourly data.  

 
20 https://www.eia.gov/state/analysis.php?sid=CA#50  
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Figure 4: Seasonal variation in average hourly emission factors for CAMX and FRCC region, 

Source: Singularity. Top left: Winter, Top right: Spring, Bottom Left:Fall, Bottom right:Summer 

While all the figures above leveraged historical grid emissions data, the Cambium dataset 

represents simulations of future grid emissions, projected through to 2050 (with historical data 

being referenced in developing inputs to those simulations). The current available version of 

Cambium, released in 2021,22 provides long run marginal emissions projections for all U.S. 

regions, at two-year intervals, from 2022 through 2050. Cambium includes projections for 70 

different scenarios, and the mid-case, which has central or median values is modeled here. Figure 

5 illustrates the projected changes in hourly emission factors across the full Cambium time period, 

i.e. up to 2050, for two different regions, CAMX and FRCC. In general, we observe lower 

projected emission factors for the CAMX region when compared to FRCC. We also observe that 

projected emission factors are higher in 2050 than 2040. This could be due to the assumptions 

included in the model such as the phase out of the federal investment and production tax credits in 

2030 that causes a slight reversal in electricity sector decarbonization (Gagnon, P. et. al 2023). 

Such forecasts of emission factors are useful to understand future impacts of energy efficiency 

projects on GHG emissions. 

 

 
22 Even though 2022 data is now in the past, the source data year used for the 2022 Cambium mid-case projection 

was prior to 2022. 
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Figure 5: Top: Average hourly emission factors (lbs per CO2) for FRCC region, Source: Cambium, 

Bottom: Average hourly emission factors (lbs per CO2) for CAMX region, Source: Cambium. 

Unlike WattTime, Singularity, and Cambium, the AVERT tool does not report hourly 

emission factors; AVERT can analyze hourly data across a full-year period and estimate emissions, 

but the output summarizes total emissions rather than hourly. As such, it may be used to estimate 

energy efficiency project emission reductions but there is reduced transparency in how its 

emissions estimates are calculated. AVERT is designed for analysts who wish to improve their 

understanding of emission benefits statewide or multi-state energy policies and programs and not 

specifically for project level M&V.  

 

4. Emissions reduction estimates: sensitivity analysis 

 

The opportunity to use advanced M&V hourly savings estimates as an input to GHG 

reduction estimates allows for accounting of the time-varying emissions of a complex grid 

generation mix. Given that using hourly data entails more effort & complexity, it is helpful to 

understand how significantly different the outputs could be. In this section we show the variation 

in estimated GHG emissions using different datasets/tools in combination with a set of hourly test 

data. The hourly test data comprises kWh savings for a full year (8760 values) with 7 different 

scenarios, each scenario having the same total kWh savings (87,600kWh) for the full period. One 

scenario reports a flat 10kWh savings for every hour of the year; two scenarios see savings only 

reported at nighttime or daytime respectively and four scenarios see savings only reported in one 

season. The description of the scenarios is given in Table 2.  

Table 2: Different savings scenarios 

Scenario Description 

S1 10kWh flat hourly savings 

S2 20kWh night savings 

S3 20kWh day savings 

S4 Savings only in summer 

S5 Savings only in winter 

S6 Savings only in spring 

S7 Savings only in fall 

Figure 6 below shows illustrative examples of two savings shapes from these test datasets, 

one where the kWh savings are only in the summer hours and the other with kWh savings only 
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during day time hours. The test dataset of different savings scenarios represent upper bound 

extreme cases of savings and are only meant to illustrate how sensitive the GHG estimates are to 

changes in input hourly data. 

 

 

Figure 6: Top: Scenario 4 (S4) Full year kWh savings occur only during summer hours. 

Bottom: Scenario 3 (S3) Single day kWh savings occurs only during day time hours. 

Table 3 and Table 4 below report the GHG estimates for the different scenarios across the 

different GHG emissions factor data sources/tools for two different regions. The estimates in these 

tables are calculated by multiplying the hourly kWh savings with the emission factors and then 

summing the total lbs CO2 for each scenario.  

Table 3: GHG estimates for different savings scenarios and tools for CAMX region (lbs CO2)  

Source 

/Scenario 

S1 S2 S3 S4 S5 S6  S7 

Singularity 44,953 48,525 41,382 42,397 47,400 39,450 50,696 

% change 

from S1 

- +7.9% -7.9% -5.6% +5.4% -12.2% +12.7% 

WattTime 72,122 78,642 65,603 68,606 80,086 63,429 76,551 

% change 

from S1 

- +9% -9% -4.8% +11% -12% +6.1% 
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AVERT  42,440 42,090 42,770 43,150 42,240 41,170 43,330 

% change 

from S1 

- -1% +0.7% +1.6% -0.5% -3% +2% 

Table 4: GHG estimates for different savings scenarios and tools for FRCC region (lbs CO2) 

Source 

/Scenario 

S1 S2 S3 S4 S5 S6 S7 

Singularity 67,510 65,261 69,759 73,149 67,630 62,816 66,672 

% change from 

S1 

- -3.3% +3.3% +8.3% -0.1% -6.9% -1.2% 

WattTime N/A N/A N/A N/A N/A N/A N/A 

AVERT 42,360 40,280 44,450 43,790 41,340 41,940 42,530 

% change from 

S1 

- -4.9% +4.9% +3.3% +2.4% +1% +0.5% 

We assess the sensitivity of the timing of hourly savings on the GHG estimates against a 

baseline scenario of S1 in which there is a flat 10 kWh savings for every hour of the year. In the 

CAMX region, for both average (Singularity) and marginal (WattTime) emission factors, scenarios 

S2, S5 and S7 produce higher GHG estimates than the baseline, while scenarios S3, S4 and S6 

produce lower than the baseline. For the FRCC region, and scenarios S3 and S4 produce higher 

average GHG estimates than the baseline, while all other scenarios produce lower than the 

baseline. Marginal emission factors were not available for the FRCC. In general, we observe that 

the Singularity and WattTime tools have large sensitivities to change in the timing of savings with 

Singularity approximately +/-12% in the CAMX region and +8/-7 % in the FRCC region and 

WattTime approximately +12/-11% in the CAMX region. We observe outputs from AVERT do 

not follow the patterns of the either of the other tools are not very sensitive to the various scenarios. 

5. Emissions reduction estimates: example project 

As illustrated in the section 4, the temporal variation in energy efficiency project kWh 

savings (the ‘savings shape’) has an impact on the magnitude of GHG emission reductions. Having 

illustrated this using hypothetical, simplified savings shape examples, here we demonstrate an 

analysis approach using a more representative example. Data for this sample were drawn from 

M&V of a sample energy efficiency project in a commercial building, with some data cleaning 

and interpolation for missing data periods. The advanced M&V approach employed for this project 

followed IPMVP Option C (avoided energy use approach) (Energy, D. (2001), using hourly 

consumption data from before and after an energy efficiency project. As shown in Figure 7 (top), 

the hourly savings for this project vary by time of year, and Figure 7 (bottom) indicates variation 

in savings by time of day (Figure shows an excerpt of the year, for illustrative purposes). The 
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somewhat jagged nature of the data and occasional anomalies are commonly observed in hourly 

data from commercial buildings.  

 

 

Figure 7: Top: Example project hourly savings across the whole year. 

Bottom: Example project hourly savings across a single week 

We assume this energy efficiency project was implemented in two different grid regions 

and we calculate the average hourly carbon reduction for each season. Figure 8 shows the average 

hourly carbon reduction for two grid regions, based on average emission factors (Singularity). In 

this instance, both regions have the highest carbon reductions (savings) in the summer. In the 

CAMX region, there are higher carbon reductions in the earlier hours of the morning (5 am-9 am) 

in all seasons, and then they drop during the day (9 am- 4 pm) with an exception in the fall, in 

which we observe a minor increase in the later evening. For the FRCC region, carbon reductions 

in the spring and summer seasons are higher during the day, with those in the summer almost twice 

those in fall.  
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Figure 8: Top: Average hourly carbon reduction in lbs CO2 per kWh for FRCC region, 

Souce: Singularity. Bottom: Average hourly carbon reduction in lbs CO2 per kWh for 

CAMX region, Source: Singularity.  

Table 5 summarizes the total estimated annual GHG reduction for the example project, 

using different datasets/tools and the variation in total emissions reduction compared to a single 

eGrid total average emissions factor. It is crucial to acknowledge that, as demonstrated in the table, 

marginal emissions factors are likely to be generally higher than their average counterparts.  

Table 5: Total estimated annual GHG reduction for the example project using different 

datasets/tools 

 CAMX Region FRCC Region 

 GHG 

Reduction 

Compared to 

eGrid 

(average) 

GHG 

Reduction 

Compared to 

eGrid 

(average) 

eGrid (average) 52,271 100% 81,901 100% 
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eGrid (non-baseload) 103,164 197% 100,113 122% 

Average hourly 

(Singularity) 

49,653 95% 68,081 84% 

Marginal hourly 

(WattTime) 

75,269 143% n/a n/a 

AVERT 52,280 99% 105,576 128% 

Cambium (2022 

Mid-Case) 

92,795 177% 121,043 147% 

We observe in both regions, the Singularity average emission factor is closest (-5%/-

16%) to the eGrid average while the estimates from Cambium (+77%/+47%) and eGrid non-

baseload (+97%/+22%) are the farthest away.  

6. Projecting future scenarios 

As shown in Table 5 above, Cambium’s 2022 mid-case scenario produced an estimate of 

92,795 lbs CO2 reduction annually for the example project data in the CAMX region. Figure 9 

below illustrates changes in emission reductions for future years in the Cambium dataset for two 

different regions, using savings profiles from the example project in Section 5. We observe a 

relatively constant carbon reduction in the CAMX region in the future. For the FRCC region, we 

observe a large reduction in the amount of carbon reduced between 2022 and 2028, and then it is 

relatively stable until 2046. These kinds of projections are useful to illustrate how energy 

efficiency project impacts can vary in the future in different regions based on different grid 

decarbonization strategies.  

 

Figure 9: Projected carbon reduction for CAMX and FRCC regions for a hypothetical energy efficiency 

project 
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7. Discussion and Conclusion  

There is a growing interest in quantifying GHG emissions impacts of EE projects. 

However, the commercial buildings market industry is still getting to grips with GHG emissions 

accounting norms using annual electricity consumption data and eGrid average emission factors. 

Moving to the broad scale use of hourly emission factors is a long way off business-as-usual, but 

goals for achieving 24/7 carbon-free electricity should drive more interest in this area.  

The growing adoption of advanced M&V using interval data along with newer 

datasets/tools provides a useful data input to calculate the GHG emissions impact from EE 

projects. This paper sheds light on some of the advantages and challenges in hourly reporting of 

emissions concerned with an M&V use case. While all the tools have a similar fundamental data 

source (CAMPD data), their methodologies on estimating emission factors from that data are 

different, resulting in different carbon reduction estimates. Hourly emission factors can help 

understand temporal decarbonization impacts of EE projects, for instance an EE project in one 

region can have a different carbon reduction during the same hours in another region. This time-

varying electricity emission factor, offers an opportunity to better understand the impacts of energy 

efficiency relative to the regional grid generation mix, and to better inform decision making around 

energy efficiency. As the observed marginal emission factors are generally higher, they can 

increase CO2 reduction estimates when compared with average emission factors. This increase 

creates a disconnect with CO2 footprint calculations using average emission factors. 

The use of average emission factors from Singularity, that is freely available, tracks the 

grid emissions more closely to real time as compared to an eGrid annual emission factor. In 

addition, the Singularity estimates show the closest alignment (-5%/-16%) to the eGrid average 

and may therefore be the most appropriate for use in hourly emission reduction estimates. The 

Cambium projections of emission factors are useful to illustrate how energy efficiency project 

impacts can vary in the future and do factor in various grid decarbonization scenarios through the 

different scenarios. AVERT was not seen to perform well in a sensitivity analysis and is not 

specifically suited for project level M&V.  

The findings provide insight to building owners, researchers and M&V practitioners on the 

temporal GHG impacts of savings from EE projects, and how it complements the annual reporting 

paradigm.  Key insights include: 

• Temporal Variability: Emissions factors vary by time and location; thus, using 

time-varying factors provides a more accurate reflection of the GHG benefits of 

EE projects. 

• Tools and Methods: The analysis highlights the differences between tools and 

their suitability for various types of assessments, emphasizing the importance of 

selecting the right tool for the assessment. 

• Regional Differences: Understanding regional and seasonal differences is crucial 

for accurate GHG calculations, as evidenced by the variations in emission factors 

across different regions. 

• Sensitivity and Projections: Sensitivity analysis and future projections help in 

understanding the potential impact of EE projects over time, guiding more 

informed decision-making. 
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By following these recommendations, organizations can enhance the accuracy and 

reliability of their GHG impact assessments for EE projects. This could potentially accelerate the 

adoption of EE measures to meet decarbonization goals when they are better matched to high-

emission periods. 
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