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ABSTRACT 

Tracking energy efficiency improvements, meeting environmental targets, and promoting 
sustainability practices are possible through accurate measurement and verification. In this paper, 
we offer a retrofit isolation measure and verification technology founded on the IPMVP standard 
of measuring the impact of different AI-driven ECMs, anomaly detection, and notification 
services.  This technology uses physics-infused machine-learning models that are constructed 
using static and dynamic data. The key attributes of this scalable and open-source technology lie 
not only in its ability to provide accurate measurements and validations of the target ECMs, but 
also in its robustness to common non-routine adjustments such as changes in occupancy, 
alterations in facility size (e.g., added square footage), variations in space type or usage, increase 
in energy demand(e.g., new IT centers, additional plug loads, and new data centers), as well as 
adjustments in zone temperature set points. 

Introduction 

Measurement and Verification (M&V) is a fundamental process in energy management 
that is essential for verifying the efficiency and effectiveness of energy conservation measures 
(ECMs) (Abrol et al. 2018, Shen et al. 2021, Wang et al. 2024). The International Performance 
Measurement and Verification Protocol (IPMVP) (IPMVP  Committee 2002)  and ASHRAE 
Guideline 14 (ASHRAE 2014) are standards that assure M&V provides a rigorous approach to 
quantifying energy savings. This process is not only important for verifying the performance of 
energy-saving initiatives but also crucial for ensuring the validity of performance-based contracts, 
particularly for Energy Service Companies (ESCOs) (Haberl & Culp 2020, Aggarwal 2020). These 
companies require precise M&V practices to validate their economic significance. The role of 
M&V extends beyond economic benefits, facilitating sustainable energy management through: 

 
● Credibility and Transparency: Demonstrating the effectiveness of ECMs through 

transparent and verifiable data, thereby building stakeholder confidence. 

● Performance Optimization: Identifying areas for improvement and ensuring 
sustainability of energy savings. 
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● Policy and Program Support: Supporting the development of energy efficiency and 
renewable energy policies based on robust data. 

Advancements in Retrofit Isolation with Physics-Infused Machine Learning 

The IPMVP standards provide different options for measuring energy savings in building retrofit 
projects. Option A focuses on Retrofit Isolation and specifically on measuring key parameters that 
impact energy use and demand (IPMVP  Committee 2002). This approach ensures accurate 
quantification of energy savings resulting from energy conservation measures (ECMs). This 
method integrates both short-term and continuous field measurements tailored to the variability of 
parameters and the length of the reporting period. This paper investigates the incorporation of 
physics-infused machine learning to estimate non-measured parameters. This represents a 
significant advancement by utilizing historical data and manufacturer specifications to enhance 
estimation accuracy, thereby reinforcing the robustness and reliability of the M&V process. 
 
The paper is structured as follows: Section 2 discusses the development of the innovative 
Measurement and Verification technology (M&V). Data collected from various ECMs deployed 
in commercial buildings is discussed in Section 3. Results and analysis of M&V are provided in 
Section 4. Section 5 concludes with some final thoughts and suggests future research directions. 
 

Technology 

The traditional scope of M&V, as delineated in foundational documents like the IPMVP, focuses 
on establishing a rigorous, standardized framework for quantifying energy savings (IPMVP  
Committee 2002). These practices are crucial for validating the efficiency of ECMs and 
underpinning the financial models of Energy Service Companies (ESCOs)  (Cagno et al., 2022). 
With the advent of AI and ML, the landscape of M&V is undergoing a transformative shift. AI-
driven ECMs focus on building schedules, and efficiency and comfort optimization with 
continuous monitoring, anomaly detection, control, and notification which are redefining the 
efficiency and precision of energy management strategies (Mehta et al. 2023,  Trueheart et al. 
2024, Merabet et al. 2021). In this context, the application of physics-infused ML represents a 
significant innovation, offering a method that combines the rigor of physical models with the 
adaptability and predictive power of ML algorithms (Iqbal et al. 2022, Behjat et al. 2020, Gokhale 
et al. 2022). This technology not only enhances the capability to manage and verify energy savings 
in complex scenarios but also fortifies the M&V process against common non-routine adjustments 
like changes in occupancy, facility modifications, and variations in space usage (Balali et al. 2023). 

 
The proposed technology presents a two-component system design: First, it features an ECM 
detection algorithm that employs machine learning to identify the impact periods of target ECMs 
within both aggregated and disaggregated energy consumption data. Second, the framework 
focuses on modeling the impact of these ECMs, accurately predicting energy consumption 
behavior in scenarios without the ECM implementation. This innovative approach allows for 
energy savings estimation independent of variations in occupancy levels and types of weather 
conditions. Such a methodology aligns with the dynamic advancements in Measurement and 
Verification (M&V) driven by AI and ML technologies. It secures the reliability and accuracy of 
energy savings predictions, facilitating more informed decision-making in energy management. 
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ECM Detection 

To ensure the effective monitoring and verification of ECMs, it is essential to design a 
technology that is formulated based on accessible data sources. Electricity data at the building 
level is often readily available for this purpose. It is important to note that equipment-level demand 
data could greatly facilitate the execution of IPMVP Option A processes. However, this requires 
the installation of submetering devices for every piece of equipment. The initial version of the 
proposed M&V Option A technology is designed based on electrical demand data, recorded at 
five-minute intervals,  representing the energy usage patterns of a building.  

 
An optimization-based method has been formulated to identify the impact periods of 

targeted ECMs. This approach processes interval demand data to create a piecewise linear 
approximation that represents the building's energy consumption over a day. The mathematical 
model within this function utilized a series of parameters (𝐴!, 𝐴", 𝐵!, 𝐵", 𝐶!, 𝐶", 𝐷!, 𝐷", 𝐸!, 𝐸", 𝐹!, 𝐹", 𝐺!, 
𝐺", 𝐻!, 𝐻", 𝐼!, 𝐼", 𝐽!, 𝐽") to define breakpoints and slopes of the fitted curve. Figure 1 shows these 
points in a typical one-day commercial building's electricity consumption. 
 

 
 

Figure 1. Building operation schedule detection through total electricity demand data 
 
 These parameters were adjusted to ensure a smooth transition between different segments, 

capturing the differences in the building's energy use pattern. The model was specifically designed 
to take into account the building's characteristic operational schedules and energy consumption 
behaviors. The overall procedure can be modeled as solving this multivariate optimization: 
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The optimization is solved using the Levenberg-Marquardt Algorithm (LMA) for each day 
and the solution is used as the ECM schedule outcome. Another helpful aspect of the optimization 
is its application as an implicit low-pass filter, which is essential since the electricity demand data 
may be very noisy.  

 
Upon applying the optimization to the data, the energy usage pattern of the building was 

characterized by several distinct phases corresponding to different operational activities. The first 
breakpoint in the curve was interpreted as the startup time, marking the initiation of the building’s 
chiller, pumps, and fans. Following this, the building's temperature was regulated to meet a specific 
threshold within a set Service Level Agreement (SLA) time. A notable feature in the daily pattern 
was identified around midday, termed the 'lunch-time ramp', where a reduction in fan speed was 
observed for approximately one to two hours. This was followed by a return to the initial fan speed. 
As the day progressed towards closure, another phase, known as the 'end day ramp', was evident, 
characterized by a decrease in fan speed, leading up to the shutdown phase. 

 
The final phase, labeled as the shutdown, was marked by the last breakpoint in the curve. 

This phase represented a period, typically lasting half an hour to an hour, where the building 
maintained a reduced temperature and fan speed before completely shutting down the chiller, 
pumps, and fans. This phase marked the end of the daily operational cycle. The analysis of these 
phases provided valuable insights into the building's energy efficiency and operational dynamics. 
By understanding these patterns, strategies can be developed to optimize energy usage, reduce 
costs, and improve the overall sustainability of the building's operations. This methodology 
demonstrates the potential of applying advanced mathematical modeling techniques to practical 
energy management problems, offering a framework for similar analyses in other buildings. 
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ECM Modeling 

To accurately model the impact of different ECMs, a physics-infused machine learning 
model is constructed using historical building data and based on the thermal specification of a 
typical building. In this study, four different ECMs were considered. Each ECM has its unique 
models that are used for energy savings: 

Startup ECM 
 
An AI-driven optimal startup ECM automates or recommends building startup procedures based 
on refined predictions of outdoor weather, indoor temperature, relative humidity, and energy 
demand. The system ensures that environmental conditions inside the building achieve optimal 
comfort levels during occupancy times, which are determined by occupancy prediction algorithms 
or set according to lease agreements. 
 
To calculate the savings associated with this ECM, the startup time needs to be shifted back to 
before the ECM was installed. Figure 2 illustrates how changing the startup time can affect 
electricity consumption and demand. Depending on the timing, consumption and demand may 
either increase or decrease. In these figures, we can see that an earlier startup time leads to more 
energy, but a slightly lower peak in demand. 
 
Using these models, we can calculate the energy savings associated with Start-Up ECM by 
 

𝑆,%-$%./ 	= 	! (𝐷01	234(𝑡) 	− 𝐷(𝑡))	𝑑𝑡	
%!"#

%&'
	

In this equation,	𝐷 represents the current electrical demand (kW) and 𝐷01	234 is used to model 
no-ECM demand. The time service legal agreement, SLA, is shown by 𝑡567 and 𝑆,%-$%./	is used 
for total daily savings due to startup ECM. It can be positive or negative based on the shift in 
demand, as illustrated in Fig. 2. 
 

Figure 2. The illustration of Startup ECM and its positive or negative effect; Left: Positive saving, Right Negative 
saving 
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ShutDown ECM 
 

The procedure for the building shutdown is determined by the prediction of occupancy 
levels using the occupancy prediction algorithm. This approach involves maintaining a reduced 
temperature and fan speed before the chillers, pumps, and fans shut down. 
 
The process of calculating energy saving associated with ShutDown ECM is quite similar to that 
of StartUp. Essentially, the ShutDown ECM saves energy by utilizing the existing heat/cooling in 
the building instead of turning off the HVAC system only after all the occupants have left the 
building. Figure 3 provides an illustration of how the ShutDown ECM impacts the typical 
commercial day's demand for electricity. Shutdown energy saving can be formulated as 
 

𝑆,#.%89:; 	= 	! (𝐷01	234(𝑡) 	− 𝐷(𝑡))	𝑑𝑡
!"#$

%&%$%&'(	*'+,

		

 
In this equation	𝑆,#.%89:;is used for total daily savings due to Shutdown ECM. It can be positive 
or negative based on the shift in demand as illustrated in Fig. 3.  

Figure 3. Illustration of Shutdown ECM: Left: Negative saving, Right Positive saving 
 

Ramp ECM 
 
The energy savings achieved with RAMP ECM can be calculated by modeling the demand using 
before and after the RAMP ECM detection period. The impact of the ECM can be measured 
without requiring any modeling if the fan specifications and demand readings are available. Figure 
4 shows how buildings behave with and without RAMP ECMs for lunch and final ramps. The 
savings associated with Ramp ECM can be calculated by 

𝑆<.;=#	$->/ 	= 	! (𝐷01	234(𝑡) 	− 𝐷(𝑡))	𝑑𝑡	
%"-&./	0'+,	1&2

%&%"-&./	0'+,	34'04

	

𝑆?@;-<	$->/ 	= 	! (𝐷01	234(𝑡) 	− 𝐷(𝑡))	𝑑𝑡
%!/-4256&

%&%"-&./	0'+,	34'04

	

If the fan specification is available, the savings can be calculated by 
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where 𝑆789:;	<=>? and 𝑆@A9=7	<=>?	 are lunch and final ramp saving respectively and 𝑁 is the fan 
speed (rpm). The hp function specifies the fan electric demand as a function of fan speed.   
 

 
Figure 4. The illustration of Lunch Ramp (Ramp 1) and Final Ramp (Ramp 2) on savings. 

  

© 2024 ACEEE Summer Study on Energy Efficiency in Buildings



Data 

To investigate the effectiveness of a proposed M&V Option A technology, a case study on 
a commercial building in San Francisco, California is used. This building has an approximate area 
of 135,000 square feet and is equipped with a Variable Frequency Drive system. The building 
operates from 8 AM to 6 PM on weekdays and remains closed on weekends and national holidays. 
We excluded these days from our savings calculations. 

 

Result 

Table 1 represents the energy savings from different ECMs using the proposed technology in the 
commercial building case study. We estimated an average electrical cost of $0.22/kWh (Parkhill, 
2020) and used 0.205 kg CO2 / kWh as the emission factor for greenhouse gases generated for the 
location (California State average (GHGAPI 2024)).  
 

Table 1. Yearly savings using the ECMs 
ECM Energy saving (kWh) Saving [%] CO2 Reduction [kg] Cost Saving [$] 
Startup 22,392 4.3 4,590 4,892 
Lunch Ramp 3,755 0.7 770 820 
Final Ramp 7,134 1.4 1,463 1,559 
Shutdown 8,777 1.7 1,799 1,917 
Total 42,058 8.0 8,622 9,188 

 
Based on the size of the building, the cost savings is approximately 7 cents per square foot. It's 
important to note that this calculation does not include the potential reduction in human labor costs 
or other benefits such as improved situational awareness (Munir et al. 2023). Most importantly, 
these cost savings are achieved without sacrificing the comfort and well-being of the tenants. 
 
The data displayed in Figure 5 illustrates the impact of ECMs on start-up and shut-down times. 
The ramp was not implemented prior to the installation of ECMs, therefore its impact cannot be 
shown in this figure. 
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Figure 5. Distribution of startup and shutdown generated by ECMs compared to the no-ECM startup and shutdown 
times 

 
 

Figure 6 shows the savings for each ECM based on the calendar date. As the figure illustrates, 
the savings are not equal in all months. Although overlay seasons with warm weather have more 
savings, this is not equal between all months.  

 

 
Figure 6. Energy savings per day. Top-left Startup saving, Top-Right Shutdown saving, Bottom-Left Lunch Ramp, 

Bottom-Right Final Ramp 
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Although using the date is helpful since many buildings show relatively fixed schedules, another 
more sophisticated approach is analyzing the savings for different outdoor conditions, as 
illustrated in Figure 7. A more pronounced relationship exists between weather and savings; 
savings increase with higher wet bulb temperatures. Due to the climate and moisture in the case 
study area, cooling is a major concern. 

 

 

 
Figure 7. Variation of Energy savings with outdoor wet-bulb temperature. Top-left Startup saving, Top-Right 

Shutdown saving, Middle-Left Lunch Ramp, Middle-Right Final Ramp, Bottom Total savings. 
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Conclusion 

This paper presents a novel paradigm in the area of energy conservation and building 
retrofits. With its foundation in the International Performance Measurement and Verification 
Protocol (IPMVP) guidelines, this research specifies a refined approach to M&V, optimized 
explicitly for retrofit isolation measures in building energy management. The method adeptly 
handles non-routine adjustments encountered in building energy scenarios, such as changes in 
occupancy, facility size, and usage patterns. Traditional methods of M&V frequently fail in these 
areas due to their limited adaptability to dynamic building environments.  

 
The application of physics-infused machine learning enhances the accuracy and credibility 

of the M&V process. This advancement is pivotal, particularly for Energy Service Companies that 
rely on the reliability of M&V to confirm the economic and ecological efficacy of their projects. 
This methodology simplifies the assessment of different energy conservation measures (ECMs),  
it also opens doors for future explorations in the field. The study concludes by urging broader 
adoption of advanced measurement and verification (M&V) techniques in energy management. 
The study emphasizes that M&V techniques play an essential role in validating and optimizing 
ECMs, and contribute significantly to achieving sustainable energy practices and efficient resource 
utilization in building infrastructures. 
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Appendix A: M&V for Demand Management Application 

Demand management applications aim to optimize building energy demand to enhance efficiency 
and reduce costs. Continuous (Recommended or Automated) Demand Management (DM) 
employs advanced prediction and uncertainty modeling to set adaptive demand limits, 
automatically activating demand reduction measures to prevent excessive peaks. This application 
can significantly lower peak demand while maintaining occupant comfort. These systems 
exemplify how intelligent energy management can yield economic and operational benefits, 
providing substantial cost savings and improving grid reliability. 
 
To accurately measure the impact of DM during event periods, our proposed M&V application 
isolates the ADM savings from other ECMs. As ADM is not a continuous factor and only affects 
the building periodically, the event period refers to times in the billing cycle when DM is activated. 
The algorithm compares kW reading data during DM event periods with and without activated 
stages, without altering the controlled environment. By collecting reading data for both scenarios, 
the verification method adheres to IPMVP (International Performance Measurement and 
Verification Protocol) Option B. In recommended demand management, Nantum M&V estimates 
kW reduction by comparing expected and observed kW results from provided recommendations, 
using an approximation model that aligns with IPMVP Option A. 
 
 

 

 
Figure 8. Quantifying Demand Reduction through Nantum ADM Implementation 
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Appendix B: Static Pressure Optimization 
Static pressure optimization is designed to minimize the energy consumption of Air Handling 
Units (AHUs) while maintaining indoor comfort. The air-side optimization system dynamically 
adjusts the static pressure setpoint based on real-time data from the Building Management System 
(BMS), which includes static pressure, fan speed, and Variable Air Volume (VAV) damper 
positions. The process begins by identifying critical zones, which are zones with significant HVAC 
impact, such as those with active temperature control or prone to hot/cold calls. These critical 
zones' cooling or heating load is estimated using inputs like damper positions, space temperature 
readings, and airflow measurements. A Model Predictive Control (MPC) algorithm optimizes the 
static pressure setpoint. Combining physics-based and data-driven models, this hybrid algorithm 
adjusts the setpoint in real time to balance energy savings and comfort. 
 
To accurately measure the energy savings achieved through static pressure optimization, the 
following methodologies are used: 

- Baseline Comparison: Establish a baseline for energy consumption and comfort levels 
before implementation 

- Energy Consumption Tracking: Monitor AHU energy usage before and after optimization 
to identify reductions. 

- Comfort Metrics Monitoring: Track indoor temperature, humidity, and occupant feedback 
to maintain or improve comfort levels. 

- Savings Calculation: Compare energy consumption data before and after optimization to 
calculate percentage savings. 
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